gll — Contingency Table Analysis gllsac

NAG C Library Function Document

nag_ binary factor (gllsac)

1 Purpose

nag_binary factor (gllsac) fits a latent variable model (with a single factor) to data consisting of a set of
measurements on individuals in the form of binary-valued sequences (generally referred to as score
patterns). Various measures of goodness-of-fit are calculated along with the factor (theta) scores.

2 Specification

void nag_binary_factor (Nag_OrderType order, Integer p, Integer n, Boolean gprob,
Integer ns, Boolean x[], Integer pdx, Integer irl[], double a[], double c[],
Integer iprint, const char *outfile, double cgetol, Integer maxit, Boolean chisqr,
Integer *niter, double alpha[], double pigam[], double cm[], Integer pdcm,
double g[], double expp[], Integer pde, double obs[], double exf[], double y[],
Integer iob[], double *rlogl, double *chi, Integer *idf, double x*siglev,
NagError xfail)

3 Description

Given a set of p dichotomous variables & = (x, z,, . . ., acp)', where ' denotes vector or matrix transpose,
the objective is to investigate whether the association between them can be adequately explained by a
latent variable model of the form (see Bartholomew (1980) and Bartholomew (1987))

G{m;(0)} = o + ;0. (1)

The z; are called item responses and take the value 0 or 1. 6 denotes the latent variable assumed to have a
standard Normal distribution over a population of individuals to be tested on p items. Call
7;(0) = P(x; = 1]0) the item response function: it represents the probability that an individual with
latent ability # will produce a positive response (1) to item ¢. «;, and «a;; are item parameters which can
assume any real values. The set of parameters, oy, for ¢ =1,2,...,p, being coefficients of the
unobserved variable 6, can be interpreted as ‘factor loadings’.

G is a function selected by the user as either ® ' or logit, mapping the interval (0,1) onto the whole real
line. Data from a random sample of n individuals takes the form of the matrices X and R defined below:
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where T; = ()1, 7),...,2y,) denotes the /th score pattern in the sample, r; the frequency with which

S

occurs and s the number of different score patterns observed. (Thus Z r; =n). It can be shown that the
=1

log likelihood function is proportional to
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(¢(9) being the probability density function of a standard Normal random variable).
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P, denotes the unconditional probability of observing score pattern Z;. The integral in (2) is approximated
using Gauss—Hermite quadrature. If we take G(z) = logit z = log (1%7) in (1) and reparametrise as follows,

a; = g, .
v = IOglt_ Q0

then (1) reduces to the logit model (see Bartholomew (1980))

™ (0) = T+ (1= 7r,; exp(—a;0)

If we take G(z) = ® ' (z) (where ® is the cumulative distribution function of a standard Normal random
variable) and reparametrise as follows,

. Qi
o = —
(14 a7)
o= o
' (1+0‘z21)

then (1) reduces to the probit model (see Bock and Aitkin (1981))

a;0 —;
m(0) = | —|.
0-o( 0]

An E-M algorithm (see Bock and Aitkin (1981)) is used to maximize the log likelihood function. The
number of quadrature points used is set initially to 10 and once convergence is attained increased to 20.

The theta score of an individual responding in score pattern x; is computed as the posterior mean, i.e.,
p

E(0|%;). For the logit model the component score X; = ajx;; is also calculated. (Note that in
j=1

calculating the theta scores and measures of goodness-of-fit nag binary factor (gllsac) automatically

reverses the coding on item j if o; < 0; it is assumed in the model that a response at the one level is

showing a higher measure of latent ability than a response at the zero level.)

The frequency distribution of score patterns is required as input data. If the user’s data is in the form of
individual score patterns (uncounted), then nag binary factor service (gllsbc) may be used to calculate
the frequency distribution.

4 References

Bartholomew D J (1980) Factor analysis for categorical data (with Discussion) J. Roy. Statist. Soc. Ser. B
42 293-321

Bartholomew D J (1987) Latent Variable Models and Factor Analysis Griffin

Bock R D and Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: Application
of an E-M algorithm Psychometrika 46 443-459

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.
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2: p — Integer Input
On entry: the number of dichotomous variables, p.

Constraint: p > 3.

3: n — Integer Input
On entry: the number of individuals in the sample, n.

Constraint: n > 7.

4 gprob — Boolean Input
On entry: gprob must be set equal to TRUE if G(z) = ® '(2) and FALSE if G(z) = logit z.

5: ns — Integer Input

On entry: ns must be set equal to the number of different score patterns in the sample, s.
Constraint: 2 x p < ns < min(2”, n).

6: x[dim] — Boolean Input/Output

Note: the dimension, dim, of the array x must be at least max(l,pdx x p) when
order = Nag_ColMajor and at least max(1, pdx x ns) when order = Nag_RowMajor.

Where X(7,j) appears in this document, it refers to the array element
if order = Nag_ColMajor, x[(j— 1) x pdx +i— 1];
if order = Nag_RowMajor, x[(i — 1) x pdx + j — 1].

On entry: the first s rows of x must contain the s different score patterns. The I/th row of x must
contain the Ith score pattern with X(/, j) set equal to TRUE if x;; = 1 and FALSE if z;; = 0. All
rows of x must be distinct.

On exit: given a valid parameter set then the first s rows of x still contain the s different score
patterns. However, the following points should be noted:

(1) If the estimated factor loading for the jth item is negative then that item is re-coded, i.e., Os
and 1s (or TRUE and FALSE) in the jth column of x are interchanged.

(i) The rows of x will be re-ordered so that the theta scores corresponding to rows of x are in
increasing order of magnitude.

7: pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.
Constraints:

if order = Nag_ColMajor, pdx > ns;
if order = Nag_RowMajor, pdx > p.

8: irl[ns] — Integer Input/Output
On entry: the ith component of irl must be set equal to the frequency with which the ith row of x
occurs.

Constraint:

irlli] >0 fori=0,1,...,s — 1;

s—1

> irli] = n.

=0

On exit: given a valid parameter set then the first s components of irl are re-ordered as are the rows
of x.

[NP3652/1] glisac.3



gllsac NAG C Library Manual

10:

11:

12:

13:

14:

15:

16:

a[p] — double Input/Output

On entry: a[j — 1] must be set equal to an initial estimate of ;. In order to avoid divergence
problems with the E-M algorithm the user is strongly advised to set all the a[j — 1] to 0.5.

On exit: a[j — 1] contains the latest estimate of «j, for j=1,2,...,p. (Because of possible
recoding all elements of a will be positive.)
c[p] — double Input/Output

On entry: ¢[j — 1] must be set equal to an initial estimate of cjy. In order to avoid divergence
problems with the E-M algorithm the user is strongly advised to set all the c[j — 1] to 0.0.

On exit: ¢[j — 1] contains the latest estimate of a, for j =1,2,...,p.

iprint — Integer Input
On entry: the frequency with which the maximum likelihood search routine is to be monitored.

If iprint > 0, the search is monitored once every iprint iterations, and when the number of
quadrature points is increased, and again at the final solution point.

If iprint = 0, the search is monitored once at the final point.
If iprint < 0, the search is not monitored at all.
iprint should normally be set to a small positive number.

Suggested value: iprint = 1.

outfile — char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

cgetol — double Input

On entry: the accuracy to which the solution is required. If cgetol is set to 10~' and on exit
fail.code = NE_NOERROR or NE_ZERO_DF, then all elements of the gradient vector will be

smaller than 107" in absolute value. For most practical purposes the value 10~* should suffice. The
user should be wary of setting cgetol too small since the convergence criterion may then have
become too strict for the machine to handle. If cgetol has been set to a value which is less than the
square root of the machine precision, ¢, then nag_binary factor (gllsac) will use the value /e
instead.

maxit — Integer Input

On entry: the maximum number of iterations to be made in the maximum likelihood search. There
will be an error exit (see Section 6) if the search routine has not converged in maxit iterations.

Constraint: maxit > 1.

Suggested value: maxit = 1000.

chisqr — Boolean Input

On entry: if chisqr is set equal to TRUE, then a likelihood ratio statistic will be calculated (see
chi).

If chisqr is set equal to FALSE, no such statistic will be calculated.

niter — Integer * Output

On exit: given a valid parameter set then niter contains the number of iterations performed by the
maximum likelihood search routine.
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17:

18:

19:

20:

21:

22:

alpha[p] — double Output
On exit: given a valid parameter set then alpha[j — 1] contains the latest estimate of c;. (Because
of possible recoding all elements of alpha will be positive.)
pigam[p] — double Output
On exit: given a valid parameter set then pigam[j — 1] contains the latest estimate of either 7; if
gprob = FALSE (logit model) or ~; if gprob = TRUE (probit model).
cm[dim] — double Output
Note: the dimension, dim, of the array em must be at least pdem x 2 X p.
Where CM(¢, j) appears in this document, it refers to the array element

if order = Nag_ColMajor, cm[(j — 1) x pdem + ¢ — 1];

if order = Nag_RowMajor, cm[(i — 1) x pdem + j — 1].

On exit: given a valid parameter set then the strict lower triangle of ecm contains the correlation
matrix of the parameter estimates held in alpha and pigam on exit. The diagonal elements of cm
contain the standard errors. Thus:

CM(2 xi—1,2xi—1) = standard error (alphali — 1])

CM(2 x 4,2 x i) = standard error (pigam(i — 1])

CM(2 xi,2xi—1) = correlation (pigam[i — 1], alpha[i — 1]),
fori=1,2,...,p;

CM(2 xi—1,2xj—1) = correlation (alphafi — 1], alpha[j — 1]

(
CM(2 x i,2 X j) correlation (pigam[i — 1], pigam[j — 1])
CM(2 xi—1,2xj) correlation (alphali — 1], pigam[j — 1])
CM(2 xi,2xj—1) = correlation (alpha[j — 1], pigam[i — 1]),

for j=1,2,...,1— 1.

If the second derivative matrix cannot be computed then all the elements of cm are returned as zero.

pdcm — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix M in the array cm.

Constraint: pdem > 2 X p.

g[dim] — double Output
Note: the dimension, dim, of the array g must be at least 2 X p.

On exit: given a valid parameter set then g contains the estimated gradient vector corresponding to
the final point held in the arrays alpha and pigam. g[2 x j — 2| contains the derivative of the log
likelihood with respect to alpha[j — 1], for j =1,2,...,p. g[2 x j— 1] contains the derivative of
the log likelihood with respect to pigam[j — 1], for j =1,2,...,p.
expp|dim] — double Output
Note: the dimension, dim, of the array expp must be at least pde x p.
Where EXPP(3, j) appears in this document, it refers to the array element

if order = Nag_ColMajor, expp|[(j — 1) x pde +i — 1];

if order = Nag_RowMajor, expp[(i — 1) x pde + j — 1].

On exit: given a valid parameter set then EXPP(4, j) contains the expected percentage of individuals
in the sample who respond positively to items ¢ and j (j < 7), corresponding to the final point held
in the arrays alpha and pigam.
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23:

24:

25:

26:

27:

28:

29:

30:

pde — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix F in the array expp.

Constraint: pde > p.

obs[dim] — double Output
Note: the dimension, dim, of the array obs must be at least pde x p.
Where OBS(i, j) appears in this document, it refers to the array element

if order = Nag_ColMajor, obs[(j — 1) x pde +1i — 1];

if order = Nag_RowMajor, obs[(i — 1) x pde + j — 1].
On exit: given a valid parameter set then OBS(4, j) contains the observed percentage of individuals
in the sample who responded positively to items ¢ and j (5 < 7).
exf[ns] — double Output
On exit: given a valid parameter set then exf[l — 1] contains the expected frequency of the I/th score
pattern (/th row of x), corresponding to the final point held in the arrays alpha and pigam.
y[ns] — double Output
On exit: given a valid parameter set then y[l — 1] contains the estimated theta score corresponding to
the /th row of x, for the final point held in the arrays alpha and pigam.
iob[ns| — Integer Output
On exit: given a valid parameter set then iob[l — 1] contains the number of items in the /th row of x
for which the response was positive (TRUE).
rlogl — double * Output

On exit: given a valid parameter set then rlogl contains the value of the log likelihood kernel
corresponding to the final point held in the arrays alpha and pigam, namely

sz_:irl[l} x log(exf[l]/n).

chi — double * Output

On exit: if chisqr was set equal to TRUE on entry, then given a valid parameter set, chi will
contain the value of the likelihood ratio statistic corresponding to the final parameter estimates held
in the arrays alpha and pigam, namely

s—1

2% irl[l] x log(exf[1] /irl[]).
=0

The summation is over those elements of irl which are positive. If exf[l — 1] is less than 5.0, then
adjacent score patterns are pooled (the score patterns in x being first put in order of increasing theta
score).

If chisqr has been set equal to FALSE, then chi is not used.

idf — Integer * Output

On exit: if chisqr was set equal to TRUE on entry, then given a valid parameter set, idf will contain
the degrees of freedom associated with the likelihood ratio statistic, chi.

df =sp—2xp if sy < 27,
idf = sg—2xp—1 if s =2,

where s, denotes the number of terms summed to calculate chi (sy = s only if there is no pooling).
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If chisqr has been set equal to FALSE, then idf is not used.

31:  siglev — double * Output

On exit: if chisqr was set equal to TRUE on entry, then given a valid parameter set, siglev will
contain the significance level of chi based on idf degrees of freedom. If idf is zero or negative then
siglev is set to zero. If chisqr was set equal to FALSE, then siglev is not used.

32:  fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, p = (value).
Constraint: p > 3.

On entry, pdx = (value).
Constraint: pdx > 0.

On entry, pdem = (value).
Constraint: pdem > 0.

On entry, pde = (value).
Constraint: pde > 0.

On entry, n = (value).
Constraint: n > 7.

On entry, maxit = (value).
Constraint: maxit > 1.
NE_INT 2

On entry, pdx = (value), ns = (value).
Constraint: pdx > ns.

On entry, pdx = (value), p = {value).
Constraint: pdx > p.

On entry, pdem = (value), p = (value).
Constraint: pdem > 2 X p.

On entry, pde = (value), p = (value).
Constraint: pde > p.

On entry, ns > 2P: ns = (value), p = (value).

On entry, irl[0] 4 ---+irllns—1] is not equal to mn: irl[0]+---+irl[ns — 1] = (value),
n = (value).

On entry, ns > n: ns = (value), n = (value).
On entry, irl[i — 1] < 0: i = (value), irl[i — 1] = (value).
On entry, rows ¢ and j of x are identical: i = (value), j = (value).

On entry, ns < 2 X p: ns = (value), p = (value).

NE_INT 3

On entry, p = (value), n = (value), ns = (value).
Constraint: 2 x p < ns < min(2”, n).
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NE_MAT_INV
Failure to invert Hessian matrix plus Heywood case encountered.

Failure to invert Hessian matrix and maxit iterations made: maxit = (value).

NE_REAL_ARRAY ELEM_CONS

One of the elements of a has exceeded 10 in absolute value (Heywood case).

NE_RESPONSE_LEVEL

For at least one of the p items the responses are all at the same level.

NE_TOO_MANY _ITER

maxit iterations have been performed: maxit = (value).

NE_ZERO DF
Chi-squared statistic has idf degrees of freedom: idf = (value).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

On exit from nag binary factor (gllsac) if fail.code = NE_NOERROR or NE_ZERO_DF then the
following condition will be satisfied:

omax  {[gli][} < egetol.

If fail.code = NE_.TOO_MANY_ITER or NE_ MAT INV on exit (i.e., maxit iterations have been
performed but the above condition does not hold), then the elements in a, ¢, alpha and pigam may still be
good approximations to the maximum likelihood estimates. The user is advised to inspect the elements of
g to see whether this is confirmed.

8 Further Comments
8.1 Timing

The number of iterations required in the maximum likelihood search depends upon the number of observed
variables, p, and the distance of the user-supplied starting point from the solution. The number of
multiplications and divisions performed in an iteration is proportional to p.
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8.2 Initial Estimates

The user is strongly advised to use the recommended starting values for the elements of a and ec.
Divergence may result from user-supplied values even if they are very close to the solution. Divergence
may also occur when an item has nearly all its responses at one level.

8.3 Heywood Cases

As in normal factor analysis, Heywood cases can often occur, particularly when p is small and n not very
big. To overcome this difficulty the maximum likelihood search routine is terminated when the absolute
value of one of the aj exceeds 10.0. The user has the option of deciding whether to exit from
nag binary factor (gllsac) (by setting fail = NAGERR_DEFAULT on entry) or to permit
nag_binary factor (gllsac) to proceed onwards as if it had exited normally from the maximum likelihood
search routine (setting fail.print = TRUE or FALSE on entry). The elements in a, ¢, alpha and pigam
may still be good approximations to the maximum likelihood estimates. The user is advised to inspect the
elements g to see whether this is confirmed.

8.4 Goodness of Fit Statistic

When n is not very large compared to s a goodness-of-fit statistic should not be calculated as many of the
expected frequencies will then be less than 5.

8.5 First and Second Order Margins

The observed and expected percentages of sample members responding to individual and pairs of items
held in the arrays obs and expp on exit can be converted to observed and expected numbers by
multiplying all elements of these two arrays by n/100.0.

9  Example
A program to fit the logit latent variable model to the following data:

Index Score Pattern Observed Frequency

1 0000 154
2 1000 11
3 0001 42
4 0100 49
5 1001 2
6 1100 10
7 0101 27
8 0010 84
9 1101 10
10 1010 25
11 0011 75
12 0110 129
13 1011 30
14 1110 50
15 0111 181
16 1111 121
Total 1000

9.1 Program Text

/* nag_binary_factor (gllsac) Example Program.
* Copyright 2002 Numerical Algorithms Group.

* Mark 7, 2002.
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#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naggll.h>

int main(void)
{
/* Scalars *x/
double cgetol, chi, rlogl, siglev;
Integer exit_status, i, pdcm, idf, p, iprint, is,
j, maxit, n, niter, nrx, lw, pdx;
NagError fail;
Nag_OrderType order;
Boolean chisqr, gprob;
char flag;

/* Arrays */

double *a = 0, *alpha = 0, *c = 0, *cm = 0, *exf = 0, *expp = O,
*g = 0, *obs = 0, *pigam = 0, *x1 = 0, *y = 0;

Integer *iob = 0, *irl = O;

Boolean *x = 0;

#ifdef NAG_COLUMN_MAJOR

#define X(I,J) x[(J-1)*pdx + I - 1]

#define CM(I,J) cm[(J-1)*pdcm + I - 1]
order = Nag_ColMajor;

#else

#define X(I,J) x[(I-1)*pdx + J - 1]

#define CM(I,J) cm[(I-1)*pdcm + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
exit_status = 0;
Vprintf ("gllsac Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");

Vscanf ("%$1d%1d%1d%*["\n] ", &p, &n, &is);
if (p > 0 && is >= 0)

{
/* Allocate arrays */
pdcm = 2%*p;
nrx = is;

lw =4 * p * (p + 16);
i ! (a = NAG_ALLOC(p, double)) ||
alpha = NAG_ALLOC(p, double)) ||
c = NAG_ALLOC(p, double)) ||
m = NAG_ALLOC (pdcm * 2*p, double)) ||
xf = NAG_ALLOC(is, double)) ||
xpp = NAG_ALLOC(p * p, double)) ||
= NAG_ALLOC(2#%p, double)) ||
obs = NAG_ALLOC(p * p, double)) ||
pigam = NAG_ALLOC(p, double)) ||
x1 = NAG_ALLOC(is, double)) ||
y = NAG_ALLOC(is, double)) ||
iob = NAG_ALLOC(is, Integer)) ||
irl = NAG_ALLOC(is, Integer)) ||
x = NAG_ALLOC(nrx * p, Boolean)) )
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥

if (order == Nag_ColMajor)
pdx = nrx;

else
pdx = p;
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for (i = i <= is; ++1i)

{

1;

Vscanf ("%14d",
for (j = 1; j <= p;
{

&irl[i-1]);
++3)

sc", &flag);
(flag == 'T');

Vscanf ("
X(1i,3)

}

Vscanf ( [*\n] ");

3
gprob FALSE;
for (1 = 1; 1 <=

P ++1)

0.5;
0.0;

/* Set
iprint
cgetol
maxit

chisqr

= -1;
le-4;

1000;
TRUE ;

gllsac(order, p, n, gprob, is,
cgetol, maxit, chisqr,
pdcm, g, expp, p, obs,
&idf, &siglev, &fail);
if (fail.code != NE_NOERROR)
{

x, pdx
&niter,
exf, vy,

Vprintf ("Error from gllsac.\n%s\n"

exit_status 1;
goto END;

¥

Vprintf ("\n")
Vprintf ("Item
for (i=1; i<=p;
Vprintf ("
1,2%i-1),

pigam[i-1], CM(2*i,2*i));
Vprintf ("\n")
Vprintf ("Index
Vprintf ("
for (i=1;

{

Alpha (s.e.)
i++)
%1d

%g (%109)

Observed
Frequency
i++)

Expected
Frequency
i<=is;
Vprintf (" %21d
y[i-11);
for (j=1; j<=p; j++)
Vprintf ("%s",X(1i,j)==
Vprintf ("\n");

127"

}
Vprintf
Vprintf
Vprintf
Vprintf

n \nll )
"Chi-squared test statistic
"Degrees of freedom
"Significance

—~ e~~~

END:
if
if
if
if
if
if

(a) NAG_FREE(a);
(
(
(
(
(
if (g
(
(
(x
(y
(1
(

a
alpha) NAG_FREE (alpha);
c) NAG_FREE(c);
cm) NAG_FREE (cm) ;
exf) NAG_FREE (exf);
expp) NAG_FREE (expp) ;
) NAG_FREE (g) ;
obs) NAG_FREE (obs) ;
igam) NAG_FREE (pigam) ;
1) NAG_FREE(x1);
) NAG_FREE(y) ;
ob) NAG_FREE (iob) ;
rl) NAG_FREE(irl);

if
if (p
if
if
if (i
if (i

[NP3652/1]

%31d %79

iprint > O to obtain intermediate output */

, irl, a, c, iprint,
alpha, pigam, cm,
iob, &rlogl, &chi,

0,

fail.message) ;

Pi )\n") ;

%g (%10g)\n", 1,

Theta
Score\n")

Pattern\n")

%109 Wi, irl[i-1],

IIFII) ;

%sg\n", chi);
$1d\n", idf) ;
sg\n",siglev) ;

alphali-117,

gllsac

CM(2*i-

exf[i-17,
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if (x) NAG_FREE (x);

return exit_status;

3

9.2 Program Data

gllsac Example Program Data
4 1000 1o
154 F
11
42
49
2
10
217
84
10
25
75
129
30
50
181
121

[ R > o B> e T e o I o B B o B> > L
e e I e R T o T > T B = s L

HeEAd"da"ea g Emge
e e e e B > B = B B e L > B

9.3 Program Results

gllsac Example Program Results

Item Alpha (s.e.) Pi (s.e.)
1 1.04546 ( 0.148087) 0.218165 ( 0.0173623)
2 1.40938 ( 0.178937) 0.604378 ( 0.0216392)
3 2.65916 ( 0.524787) 0.834117 ( 0.0357898)
4 1.12169 ( 0.139581) 0.484569 ( 0.0198529)
Index Observed Expected Theta Pattern
Frequency Frequency Score

1 154 147.061 -1.27348 FFFF

2 11 13.4437 -0.873074 TFFF

3 42 42.4201 -0.846239 FFFT

4 49 54.818 -0.746856 FTFF

5 2 5.88558 -0.4941406 TFFT

6 10 8.41022 -0.3994061 TTFF

7 27 27.5115 -0.374319 FTFT

8 84 92.0619 -0.33196 FFTF

9 10 6.23651 -0.0186861 TTFT

10 25 21.8468 0.0272335 TFTF

11 75 73.8352 0.0549022 FFTT

12 129 123.766 0.161802 FTTF

13 30 26.8989 0.465873 TFTT

14 50 50.8813 0.591349 TTTF

15 181 179.564 0.625634 FTTT

16 121 125.36 1.14441 TTTT

Chi-squared test statistic = 9.02731
Degrees of freedom = 7
Significance = 0.250701
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