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Abstract

The Ch programming environment is an open system. Users can enhance the system
through its various user interfaces. Ch is specially designed for applications in mechan-
ical systems engineering, although it is applicable to many other disciplines as well. Ch
has been successfully used as a teaching and learning tool for an undergraduate course,
Computer-Aided Mechanism Design, at the University of California, Davis in Fall 1993.
In this paper we will present the Ch programming environment and programming fea-
tures developed for teaching and student learning. We will describe how a teaching
toolbox is developed and used for teaching mechanism design. Source codes in the
teaching toolbox are available to students so that they can study the software imple-
mentation of algorithms and modify the codes to solve the similar problems. Although
the developed teaching toolbox is specific for instruction on mechanism design, the Ch
programming environment and ideas presented in this paper are general, and they are
applicable to instructional improvement for a wide range of subjects in engineering.
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1 Introduction

Mechanism design is an intriguing subject. It gives students some experience in and physical appre-
ciation of mechanical design. Mechanism design is therefore an important course for undergraduate
students, majoring in mechanical design, who prepare either for advanced graduate studies or for
entering engineering practice at the bachelor’s level. Some basic principles and concepts of the
subject can be explained by simple illustrative problems with traditional graphic methods [1, 2].
However, in general, analytical and numerical methods with application of digital computers are
needed in order to fully comprehend the subject matter and solve complicated problems. Because
of the rapid advance of computer technologies, computational methods for analysis and design of
multibody mechanical systems are becoming popular in engineering practice. When students enter
engineering practice, they will learn how to use one or more commercial software packages such
as ADAMS (Automated Dynamic Analysis of Mechanical Systems), DADS (Dynamic Analysis
and Design System), KINSYN (KINematic SYNthesis) [3], and LINCAGES (Linkage INteractive
Computer Analysis and Graphical Enhanced Synthesis Package) [4, 5] to solve complicated engi-
neering problems. Therefore, in addition to basic principles, it is increasingly important to teach
numerical aspects of the subject in class and motivate students to use computational techniques to
solve real-world engineering problems. These specialized software packages cannot best serve this
purpose, because these packages are supplied as black boxes without source codes. Learning curves
for some of these packages are quite steep because users are assumed to have full knowledge of the
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subject. Most important, these packages are dedicated to specific application areas and they are
not suitable for teaching students general basic principles. Menu-driven educational software for
animation and design of mechanisms has been developed for students and less experienced users.
Although graphics oriented educational software such as the student version of LINCAGES [6, 7]
and MechAnimator [8] are simpler than commercial software packages designed for experienced
practicing engineers, the numerical aspects and software implementation of mechanism analysis
and design cannot be easily appreciated through menu interfaces. The analytical sequences of the
algorithm are not transparent to users in a menu-driven software package.

It is valuable for students to develop their analytical skill by translating mathematical formulas
into a computer program and solving some practical design problems. However, if students are
asked to write their own computer programs starting from scratch in FORTRAN, C, or any other
language, it is too time consuming and students will spend most of their time debugging their
computer programs rather than studing the subject. They may lose sight of the forest for the
trees. Because of the lack of suitable programming environment and the constraint of a short
period of instructional time, some instructors abandon the idea of requiring students to “code
their own” [9]. Small programs such as FOURBAR, FIVEBAR, and DYNAFOUR are used by students to
solve some simple design problems for reinforcing kinematic concepts [9, 10]. The source codes for
these program modules are normally not available to students. Even if they were available, the
complexity of these programs and large size of source codes, typically written in C or FORTRAN,
cannot be easily comprehended by average students within a short period of time.

To teach mechanism design effectively, we have used a teaching toolbox to teach mechanism
design. A toolbox is significantly different from specialized commercial software packages. Students
can examine the available source code of a toolbox and modify it to solve similar problems. Through
this learning-by-examples process, students will better understand the principles and numerical as-
pects of the subject. In addition, with this kind of toolbox, students can use its high-level building
blocks to conveniently build their own software packages to solve complicated practical engineering
analysis and design problems. This toolbox can be best implemented by the Ch programming
language because it has been especially enhanced for this educational purpose [11-16]. Ch is de-
signed to be a superset of ANSI C; it bridges the gap between C [17, 18] and FORTRAN [19, 20].
Data types such as complex and computational array not only simplify the analysis and design of
multibody mechanical systems significantly, but also make the source code more readable. A Ch
program for solving mechanism design problem is significantly smaller than that written in C or
FORTRAN 77. Hence, students can easily modify the existing source code in a toolbox to solve
different problems. Unlike C, Ch is strongly block-structured so that a function can not only call
itself recursively, but can also be nested. Therefore, Ch is a modular language and is ideal for the
creation of toolboxes for teaching and student learning.

Feedback from students is critical to the development of the Ch programming language, it has
reshaped the language in many ways and has scaled up our research into the working technology. In
this paper we will present the Ch programming environment and programming features developed
for this educational purpose. We will describe how a teaching toolbox is developed and used for
instructional improvement on mechanism design at the University of California, Davis.

2 Ch Programming Environment

The Ch programming environment can be introduced with a famous programming output statement

hello, world
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that was popularized by Kernighan and Ritchie (1978). The level of difficulty in printinf this
statement along with other criteria is often used to judge the simplicity and friendliness of a
language. Users with previous C or FORTRAN experience may remember that print this statement,
one has to go through compilation and link processes to get the executable object code first, then
run the program to get the output. For a large program, the make utility may have to be used to
maintain the program’s integrity. However, these compilation and link processes are unnecessary
for running a Ch program because Ch is interpretive, with a quick system response at its current
implementation. As a specific example, assume that the machine name of a computer is fool; the
prompt of the screen in the C-shell programming environment under the UNIX operating system
is shown below:

fool%

The output from the system, as shown in this system prompt, is displayed in italics in this paper.
To invoke the Ch programming environment, one types ch on the terminal keyboard. The screen
will become:

fool>

This prompt indicates that the system is in the Ch programming environment and is ready to
accept the user’s terminal keyboard input. It is also possible to set Ch as the default shell so that,
whenever the system is logged in, the Ch programming environment will be invoked automatically.

2.1 Command Mode

If the input typed in is syntactically correct, it will be executed successfully. Upon completion
of the execution, the system prompt fool> appears again, otherwise it prints out the corresponding
error messages to assist the user in debugging the program. At the system prompt fool>, any UNIX
commands such as ¢d, 1s, and pwd can be executed. In this scenario, Ch is used as a UNIX shell
in the same manner as Bourne-shell, C-shell, or Korn-shell. Because Ch is a superset of ANSI C,
it is more powerful than these conventional UNIX shells. For example, to get the output hello,
world, one can type "hello, world". Then, the screen will appear as follows:
fool> "hello, world"
hello, world
fool>
where the input typed in from the terminal is in the typewriter font. In Ch, if there is any output
from the system resulting from the execution of a command, it will be printed out. In this case,
hello world is the output from execution of the expression "hello world" that is a string value.
If an expression is typed in, it will be evaluated by Ch and the result will be printed out immediately.
For example, if the expression 1+3#2 is typed in, the output will be 7. If the input is 8, the output
is the same as the input of 8. Any valid Ch expressions can be evaluated in this command mode.
Therefore, Ch can be used as a calculator by novice users.

The first lesson that a C programmer learned may be to use the standard I/O function printf()
to get the output hello, world. Because Ch is a superset of C, the output can be obtained by
the I/O function printf() as follows:
fool> printf("hello, world")
hello, world
fool>
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2.2 Command Files

An ANSI C program can be executed without compilation in a Ch programming environment.
The command-line argument interface in Ch is ANSI C compatible. C programs are called command
files or simply commands in Ch. A command file must start with a comment to distinguish itself
from other shell commands. In addition, it must have both read and execute permissions. In a
Ch programming environment, a command file can be executed without compilation. For example,
one can create a command file named print by a text editor. If the program print is as follows:

/* the first line must be a comment */
main()
{
printf("hello, world\n");
}

One can type the command print to get the output of hello, world as follows:

fool> print
hello, world
fool>
To parse a Ch program without execution, one can use the built-in command chh. For example,
if the program print is

/* print */
main()
{
printf ("hello, world\n";
}

the error of the program can be diagnosed by the command chh as follows:

fool> chh print

ERROR: missing )

ERROR: Syntaz error at line 4

fool>

where the missing parenthesis for the function printf() at line 4 is detected by the system.

2.3 Script Files

Statements, functions, and commands can be grouped as a script file or script in Ch. Like a
command file, a script file must start with a comment and have both read and execute permissions.
For example, if the script file test contains the following statements:

/* test */

int i = 90;

/* copy test to testl */

cp test testl

printf("i is equal to %d from the script file\n", i);
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it can be executed interactively as follows:

fool> test

i 1s equal to 90 from the script file

fool>

Or, it can be executed in two separate steps as follows:

fool> chh test

fool> run

1 1s equal to 90 from the script file

fool>

where the command chh test parses the script file test first, and the built-in command run then
executes the parsed program. After execution of the script file test, the program test will be
copied to a new file named testl by the programming statement cp test testl in the program
test.

2.4 Function Files

A Ch program can be divided into many separate files. Each file consists of many related
functions at the top level that are accessible to any part of a program. A file that contains more
than one function is usually suffixed with .ch to identify itself as part of a Ch program. Besides
command files and script files, there are function filesin Ch. A function file in Ch is a program that
contains only one function definition. A function file must be readable. The extension of a function
file is specified by the system built-in string variable extf. The names of the function file and
function definition inside the function file must be the same. The functions defined using function
files are treated as if they were the system built-in functions in a Ch programming environment.
For example, if the system variable extf is ".c .ff" and the program addition.c contains the
following statements:

/**x*x* function file for adding two integers ***x*/
int addition(int a, b)
{

int c;

cC =a + b;

return c;

}

it can be invoked automatically to add two integers as shown in the following interactive execution
session:

fool> int i = 9;

fool> i = addition(3, 1i);

fool> 1

12

fool>

where the integer value 3 and integer variable i with the value of 9 are added together by the function
addition() first, the result is then assigned to variable i. In this case, function addition() is
treated as if it was a built-in function like sin() or cos().
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Table 1: The complex operations

Definition Ch Syntax Ch Semantics
negation —7z —T —1y
addition zl + z2 (z1 + z2) +i(y1 + y2)
subtraction z1l — z2 (x1 — z2) +i(y1 — y2)
multiplication | zl * z2 (1 x 2o —y1 * y2) +i(y1 * T2 + 21 * yo)
division zl | 22 L1X T + Yr*Ys | ;1 xTg — T * Y
3 + Y2 3 + Y2
equal z1 ==122 | 1 ==2x9 and y; == 1o
not equal zl '= z2 T1!=x9 or Y1 !I= 9o

3 Programming Features Related to the Teaching Toolbox

The ANSI C programming language is not the best language for beginners. Undergraduate students
in mechanical engineering usually do not have extensive knowledge about computer hardware and
software engineering. Most students taking a course on mechanism design are junior or senior
students. They have taken a first course in computer programming using a simple programming
language such as FORTRAN 77 or BASIC. Students intend to compare what they are learning
with what they have learned before. Therefore, we have tried to merge C and FORTRAN 77 in the
Ch programming language so that students can treat Ch as if it were a FORTRAN programming
language. Ch is also similar to BASIC because of its interpretive nature. Hence, students can learn
advanced programming features of Ch at a comfortable pace.

In addition, we have added many new programming features to Ch. These programming features
are not only useful for general-purpose programming but also important for development of teaching
toolboxes. A toolboz is a directory that contains many relevant command files, script files, and
function files described in the previous section. A Ch program for solving practical engineering
problems can be easily developed by using modules from the toolboxes. The major programming
features enhanced in Ch for development of teaching toolboxes for mechanical systems design
are built-in complex and dual data types, polymorphism, pass-by-reference in functions, nested
functions, and computational array [11-16]. These features are simple and easy to comprehend by
students who have had a first course in computer programming.

Complex number, an extension of real number, has wide applications in science and engineering.
It is useful for analysis and design of planar mechanisms [7, 10]. Because of its importance in
scientific programming, numerically oriented programming languages and software packages usually
provide complex number support in one way or another. For example, FORTRAN 77 [19], a
language mainly for scientific computing, has provided complex data type since its earliest days. C,
a modern language originally invented for UNIX system programming [17], does not have complex as
a basic data type because numerically oriented scientific computing was not its original design goal.
Computations involving complex numbers can be introduced as a data structure in C. However,
programming with such a structure is somewhat clumsy, because for each operation a corresponding
function has to be invoked.

To simplify the matter, complex is implemented as a built-in basic data type in Ch. The
arithmetic and relational operations for complex numbers are treated in the same manner as those
for real numbers in Ch. The negation of a complex number, and arithmetic and comparison
operations for two complex numbers are defined in Table 1, where complex numbers z, z;, and z9
are defined as = + iy, 1 + iy1, and xo + iyo, respectively. The built-in complex functions related to
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Table 2: The syntax and semantics of built-in complex functions for planar mechanism design.

Ch Syntax Ch Semantics
sizeof(z) 8
abs(z) sqrt(z? + y?)
real(z) x

imaginary(z) |y
complex(z,y) | = + iy

conjugate(z) T —1y

arg(z) ©; © = atan2(y, x)

polar(r, theta) | r cos(theta) + ir sin(theta)

sqrt(z) sqrt(sqrt(z? + y2))(cos %— + isin %)—), O = atan2(y, )

planar mechanism design are listed in Table 2 along with their definitions. The input arguments of
these functions can be complex numbers, variables, or expressions. There are more built-in complex
functions available in Ch. Further details about handling of complex numbers in Ch have been
presented by Cheng [13, 15]. In the following sections, we will describe how complex numbers in
Ch are used for analytical treatment of planar mechanism design.

4 Analysis of a Four-Bar Linkage

The simplest closed-loop linkage is the four-bar linkage, as shown in Figure 1. In this section we
describe how programs in the teaching toolbox are used for analysis of the four-bar linkage. The
ideas presented in this section, however, are applicable to more complicated planar mechanisms as
well.

4.1 Position Analysis

For the four-bar linkage shown in Figure 1, the displacement analysis can be formulated by the
following loop-closure equation
ro+r3=r;+ry. (1)

Using complex numbers, equation (1) becomes
,’.2€i02 + T3€i03 = €i01 + T‘46i04, (2)

where link lengths 71,79, r3, and 74 and angular position #; for the ground link are constants. Angle
0o for the input link is an independent variable; angles 65 and 84 for the coupler and output links,
respectively, are dependent variables. Equation (2) can be rearranged as

03 _ 01

rae’ ree?t = r et — pye', (3)

01

Let Ry = 73,¢1 = 03, Ry = —14, 9 = 04,2 = (x3,y3) = 1% — 132 equation (3) becomes the

following general complex equation

R1€" + Rye®? = 2, (4)
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y

Figure 1: The four-bar linkage.

Given link lengths of a four-bar linkage and angles 6; and 65, the angular positions #3 and 64 can
be solved as follows. From equation (4), we get

r3 — R2 COS ¢2
Ry ’

_ Y3 — Rs sin ¢o

in ¢y R,

cos 1 = (5)
Substituting these results into the identity equation sin®¢; + cos®?¢; = 1 and simplifying the

resultant equation, we get

T3+ 95+ R3 — R? (©)
2R,

Y3 Sin 2 + x3 COS o =

From this equation, we can derive the formulas for ¢; and ¢- as follows:

(7)

2 2 R2 _ R2
¢o = atan2(ys,x3) + acos (ac3 st 1)

2R2\/$§ + y?,

¢1 = atan2(sin ¢y, cos ¢1) (8)

where sin¢; and cos¢; are computed using equation (5). The above derivation of analytical
formulas (7) and (8) for ¢9 and ¢; in equation (4) is quite simple in comparison with presentations
in most contemporary mechanism design textbooks.

In general, there are two sets of solutions for f3 and 64 for a given 0 as shown in equation (7),
which correspond to two different circuits or two geometric inversions of a circuit of the four-bar
linkage [7]. Equation (4) is a general complex equation. Many analysis and design problems for
planar mechanisms can be formulated in this form. Because it is a complex equation that can be
partitioned into real and imaginary parts, two unknowns out of four parameters R, ¢1, R2, and
¢2 can be solved from this equation. To assist student learning, we have developed a function file
complexSolver.ff in the teaching toolbox to solve this complex equation. The function prototype
for the function complexSolver() is given below,
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Program 1: Program fourbarTheta3Theta4P for computing 3, 8, and position of the coupler point
P of a four-bar linkage.

complex complexSolver(int nl, n2; float firstknown, secondknown;
complex z, &secondz)

where parameter n1 is the position of the first of two unknowns to be obtained on the left-hand
side of equation (4) , n2 is the position of the second of two unknowns, firstknown is the value
of the first known on the left-hand side of equation (4), secondknown is the value of the second
known, and z is the complex number on the right-hand side of equation (4). The return value from
this routine is a complex number. The complex format is for convenience only. The real part of the
return complex number is the first unknown whereas the imaginary part is the second unknown
in equation (4). If either ¢; or ¢9 is to be found, there are two sets of solutions for equation (4).
In this case, the second set of solutions is passed to the calling function from complexSolver()
through the complex parameter secondz by reference [11].

With this general complex equation solver, a linkage analysis problem can be solved conveniently,
which can be illustrated by the following analysis problem.

Problem 1: Link lengths of a four-bar linkage, as shown in Figure 1, are given as
follows: 71 = 12",7r9 = 4", r3 = 12", r4 = 7'. The phase angle for the ground link is
61 = 10°, the coupler point P is defined by the distance r, = 5” and constant angle
B = 20°. Find the angular positions #3 and 64 and the position for coupler point P
when the input angle 65 is 70°.

Problem 1 can be easily solved by using a Ch program named fourbarTheta3Theta4P shown in
Program 1. The position of coupler point P shown in Figure 1 can be expressed in vector form

using complex numbers as: ' '
P = roei?? 4 Tpe’(93+ﬂ) (9)

A complex number z = (z,y) = re’’ in Ch can be constructed either by complex(x,y) or
polar(r,theta). Equation (9) can be translated into a Ch programming statement

P = polar(r2,theta2) + polar(rp,theta3+beta).

as shown in Program 1.

The four-bar linkage given in Problem 1 is a crank-rocker. There are two distinct circuits for
each input link position. Two sets of solutions for angles 83 and 64 as well as the position vector
for coupler point P are calculated by Program 1. Arrays in Ch are fully ANSI C compatible, they
are pointers. For the convenience of student learning and consistency with text description, we use
arrays with index starting from 1, instead of 0, in the teaching toolbox. Computational arrays with
adjustable initial index will be implemented in Ch in the future. In Program 1, link parameters
r; and 6; are treated as elements of r[i] and thetal[i] of arrays r[ ] and thetal[l, respectively.
The output from Program 1 is as follows:
thetad = 0.459, thetaj = 1.527, P = complex( 4.822, 7.374)
thetad = -0.777, theta4 = -1.845, P = complex( 5.917, 1.684)

According to the IEEE 754 standard for binary floating-point arithmetic [21], any invalid so-
lution in Ch is symbolically represented as NaN. This can be very useful for analysis of mecha-
nisms. For example, if the link dimensions for the four-bar linkage in Problem 1 are changed to
r1 = 12", r9 = 12", 73 = 4", 74 = 7". The linkage then becomes a double-rocker. There are two
circuits, each with two geometric inversions, for this linkage. The input ranges for two separate
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Program 2: Program fourbarCouplerCurve for generating coupler curves of a four-bar linkage.

circuits are 24.36° < 02 < 64.56° and 315.44° < 62 < 355.64°. When the input angle 65 is set to
70°, there exist no solutions for #3 and 84 . This can be gracefully handled in a Ch program. If the
following programming statement
r[1] = 12; r[2] = 4; r[3] = 12; r[4] = 7;
in Program 1 is changed to
r[1] = 12; r[2] = 12; r[3] = 4; r[4] = 7;
the output from the program becomes
theta8 = NaN, thetaj = NaN, P = complez( NaN, NaN)
theta3 = NaN, thetaj = NaN, P = complex( NaN, NaN)

A four-bar linkage may take the so-called crank-rocker, double-crank (drag-link), double-rocker,
or triple-rocker [7]. Given the link dimensions and ground link, the type of the four-bar linkage
can be determined by Grashof criteria. The number of circuits and number of geometric inversions
as well as the input and output ranges for a given four-bar linkage can be determined. To assist
student learning, we have developed a function file grashof.ff in the teaching toolbox. The
function prototype for grashof () is as follows:

int grashof( float r[], thetal, inputlimitsi[], inputlimits2[],
outputlimitsi[], outputlimits2[]; char *grashof_filestr)

where array r[ ] contains length of each link of the linkage, thetal stands for 6;. Both array r[ ]
and thetal are input to the function. The other parameters are related to the output from the func-
tion. Elements inputlimit1[0] and inputlimit1[1] of array inputlimiti[ ] contain the lower
and upper limits of the input link 2 for the first branch of the linkage, elements inputlimit2[0]
and inputlimit2[1] contain the lower and upper limits of the input link 2 for the second branch
of the linkage, respectively. Similarly, elements outputlimit1[0] and outputlimiti[1] of array
inputlimiti[ ] contain the lower and upper limits of the output link 4 for the first branch of the
linkage, whereas outputlimiti[0] and outputlimit1[1] contain the lower and upper limits of
the output link 4 for the second branch of the linkage, respectively. Parameter grashof filestr
can be used to direct the output from the function grashof () to either a file or the screen. The
function returns the number of distinct input ranges for the given link dimensions. If four bars
cannot form a valid linkage, the return value is 0; if the linkage is a rocker-crank or double-rocker,
the return value is 2; otherwise, the return value is 1. How this function in the teaching toolbox has
been used for mechanism design can be demonstrated by the following mechanism design problem.

Problem 2: The link lengths of a four-bar linkage, as shown in Figure 1, are given as
follows: 1 = 12" 79 = 4" r3 = 12", 74, = 7". The phase angle for link 1 is ; = 10°, the
coupler point P is defined by distance r5 = 5"” and constant angle 8 = 20°, Determine
the type, and input and output ranges of the four-bar linkage. Plot the coupler curve
for coupler point P = (zp,y,) when input link 2 is rotated from 6oy, t0 G245z

We can enhance Program 1 to solve this mechanism design problem. Program 1 has been
expanded in Program 2. The output at the top of Figure 2 is produced by the function grashof ().
It indicates that the four-bar linkage is a crank-rocker with a complete 360° rotation for the input
link 2. The output ranges 77.98° < 6, < 150.16° and 315.44° < 6, < 355.64° of the output
link 4 for two distinct circuits are also printed out. If there are multiple input ranges, the function
couplerCurve () will be called more than once to generate coupler curves for coupler point P. For

10
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Grashof type: Crank-Rocker
Input Characteristics: Input 360 degree rotation
Output Range:

Branch: 1 2

(deg)  (deg)
Lo limit: 77.98 315.44
Hi limit: 150.16 355.64

Coupler curve for the 1st branch
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Figure 2: The output from Program 1.
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Problem 2, the function couplerCurve () is called only once because the input range 0 < 62 < 360°
is the same for two distinct circuits, that is, the return value num_range of the function grashof ()
is 1. These input and output ranges are also saved in arrays inputlimiti[ ], and outputlimiti[
] and outputlimit2[ ], respectively. The lower and upper input limits inputlimit1[1] and
inputlimit1[2] for link 2 are passed to the function couplerCurve() for generating coupler
curves. Similar to Program 1, angles #3 and 6, corresponding to 6, are calculated by the function
complexSolver(). The coupler curve for point P is generated when 65 is rotated from 69,,;, to
Oomaz using a for-loop with an increment step size of 1°. The data for coupler curves of different
circuits are saved in files branchl.out and branch2.out first. The coupler curves are then plotted
by the plot routine plotXYR() using the data from these two files. The function plotXYR() is
called from the function file plotXYR. ff in the teaching toolbox. The first argument of the function
plotXYR() is the name of the file that contains data for plotting. The second argument is the title
of the plot. The third and fourth arguments are labels for the x-axis and y-axis, respectively. The
fifth, sixth, and seventh arguments are the inital value , final value, and incremental step size for
x-axis, respectively. The last three arguments are for the y-axis.

4.2 Velocity and Acceleration Analysis
4.2.1 Velocity Analysis

The velocity analysis for a closed-loop linkage can be carried out from its loop-closure equation.
For example, taking the derivative of the loop-closure equation (3), we get the following velocity
relation

104 _

wyr3e? — warge —woree'?? (10)

for the four-bar linkage shown in Figure 1. Given values of ra, 13, 74, 02,03, 04 and wo, we can readily
use the function complexSolver() to compute angular velocities w3 and wy for coupler and output
links, respectively. We can also derive analytical solutions for w3 and ws. Multiplying equation (10)
with e~ equation (10) becomes [22]

(U3’f'36i(03_04) — wyry = —worget(f2=04) (11)
The imaginary part of equation (11) gives
w3rg sin(f3 — 04) = —wore sin(fy — 04) (12)

Then
. woT9 Sin(04 — 92)

w3 =

13
r3sin(fy — 63) (13)
Computation of the angular velocity ws can be programmed in Ch as function files or they can use
a single line of code. For example, w3 can be calculated in Ch using a function fourbarOmega3()
as follows:

float fourbarOmega3(float r[], thetal]l, omegall)
{

float a, b;

a = -r[2]*omega[2] *sin(theta[4]-theta[2]);

b = r[3]*sin(theta[4]-theta[3]);

return a/b;

12
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Similarly, the following analytical expression for w4 can be derived by multiplying equation (10)
with e~3,

woT9 sin(93 — 92)

Wy =

T4 sin(03 — 94) (14)

wy can be calculated in Ch using a function called fourbarOmega4 ().
The derivative of equation (9) gives the following analytical expression for the velocity of coupler
point P. . .
Vp = iworge™? + iwgrpe’(93+’3) (15)
which can be translated into a Ch code fragment as

float r2, r3, theta2, theta3d, rp, beta, omega2, omega3;
complex I=complex(0,1), Vp;
Vp = Ixomega2*polar(r2, theta2) + I*polar(omega3*rp, theta3+beta);

4.2.2 Acceleration Analysis

For a closed-loop planar linkage, the acceleration relation can be obtained by taking the second
derivative of the loop-closure equation. For example, taking second derivative of the loop-closure

equation (3), we get the following acceleration relation for the four-bar linkage shown in Figure 1.
03 03 164

104 _

ioigrae’’® — wgrge’ —ioyree?t 4+ wirge iagrae®? + w§r26w2 (16)

where ag, ag, and a4 are angular accelerations for input, coupler, and output links, respectively,
Similar to the derivation for w3, the following analytical formulas for a3 and a4, respectively, can
be derived:

—roay sin(fy — 62) + rows cos(0s — Bo) + rr3w3 cos(fy — 63) — raw?

= 1
s T3 sin(94 - 93) ( 7)

o = T2 sin(f3 — 02) — row? cos(03 — Oo) + ryw? cos(f3 — O4) — r3w3 (18)
3 T4 sin(03 — O4)

Two functions fourbarAlpha3() and fourbarAlpha4() have been written for calculating a3 and
a4, respectively. They are included in the teaching toolbox.

4.3 Dynamics

The purpose of acceleration analysis is for inertia-force analysis. Given position, velocity, acceler-
ation, and inertia properties such as mass and mass moment of inertia for each moving link of a
four-bar linkage, we are able to perform force analysis for the linkage. Various formulations are
available for dynamics. For this entry-level undergraduate mechanism design course, we choose to
use matrix method [7]. To simplify the programming burden, we have implemented computational
arrays in the Ch programming language. Computational arrays can be treated as single objects.

For the four-bar linkage shown in Figure 3, dynamic formulations can be derived to calculate
the required input torque T and joint reaction forces. Three free-body diagrams for links 2, 3, and
4 are given in Figure 4. Three static equilibrium equations, in terms of forces in X and Y directions
and moment about the center of gravity of the link, can be written for each link.

For link 2, we get

F12w + F32z + Fg2;c =0 (19)
—mag + Fioy + F39y + Fgpy = 0 (20)
Ts + (—1‘92) X Fio+ (1'2 — I'gz) X F3o + Tg2 =0 (21)

13
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AD

Figure 3: The four-bar linkage with offset gravity centers for moving links.

Figure 4: Free body diagrams for the moving links of the four-bar linkage.
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where ry, = roei(?2192) ig the position vector from joint Ag to the center of gravity of link 2. Fio
and F3; are the joint forces acting on link 2 from the ground and link 3, respectively. F,, and T,
are the inertia force and inertia moment, respectively, of link 2. ms is the mass of link 2. T is the
driving torque.

For link 3, we get

F23$ + F43$ + Fggz =0 (22)
—m3g + F23y + F43y + Fggy =0 (23)
(—rgs) X Fog + (r3 —rgy) x Fag +Tg, = 0 (24)

where ry, = r3¢i(%3193) i the position vector from joint A to the center of gravity of link 3. Fa3
and Fy43 are the joint forces acting on link 3 from links 2 and 4, respectively. Fy, and T,, are the
inertia force and inertia moment, respectively, of link 3. mg is the mass of link 3.

For link 4, we get

F34w + F14:c + Fg4:c =0 (25)
—maqg + F34y + F14y + Fg4y =0 (26)
(_rg4) X Fiq + (r4 - rg4) X F34 + T94 +17; = 0 (27)

where ry, = r4€i(04194) ig the position vector from joint By to the center of gravity of link 4. F4
and F34 are the joint forces acting on link 4 from the ground and link 3, respectively. F,, and T,
are the inertia force and inertia moment, respectively, of link 4. my is the mass of link 4. Tj is the
torque of external load.

Equations (21), (24), and (27) can be expressed explicitly as

TS —Tgy —Tgy COS(92 + (52)F12y + Tgs Sin(og + (52)F12$

+[rg cos O — g, cos(62 + 02)]Faoy — [rosinfy — 1y, cos(0y + d2)| F3o5 + Ty, = 0 (28)
—Tgy — Tg5 €O8(03 + 03) Fazy + 1g, sin(03 + 03) Fasy
+([r3 cos O3 — 1y, cos(03 + 03)|Fazy — [r3sinfs — rg, cos(03 + 03)|Fuzgs + Ty, = 0 (29)
—Tgy — Tgqa €08(04 + 64) Fray + 14, 5in(04 + 04) Flag
+([racos Oy — 1y, co8(04 + 04))Faay — [rasin€s — g, cos(0s + 04)|F3aq + Ty, = 0 (30)
Note that Fjj; = —Fji; and Fijy = —Fj;y, equations (19-27) can be rewritten as nine linear

equations in terms of nine unknowns Fiog, Fioy, Fosg, Fosy, F3ag, F3ay, Fiag, Fiay, and Ts (8 joint
reaction forces plus one input torque). They can be expressed in a symbolic form

Ax=b (31)

where x = (F12;E; F12y, F23$, F23y, F34$, F34y, F14$, F14y, TS)T is a vector COIlSiStiIlg of the unknown
forces and input torque, b = (Fg,u, Fyoy —m2g, Tgy, Fous Fosy —m3G, Tgss Foyuy Fguy —mag, Ty, +1)T
is a vector that contains external load plus inertia forces and inertia torques, and A is a 9x9 square
matrix formed using the angular position of each link and link parameters. What distinguish the
above-derived equations (19-27) from those in Erdman and Sandor [7] are that the center of gravity
of each link is not at the center line between two joints and the gravitation force for each link is
included in formulations explicitly. Because equation (31) has 9 unknowns, it should be solved
numerically. This can be easily implemented in Ch by only a single line of code shown below,

X = inverse(A)*B
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Program 3: Program fourbarForceTorque for computing joint reaction forces and required input
torque.

A function file fourbarForce.ff has been written for the teaching toolbox. The program
appears as follows:

void fourbarForce(float r[],thetal],rgl[],deltal],omegal]l,alphal]l,m[],igl],t1;
array float X[:]1)

{
array float A[91[9], BI[9I;
/* compute matrix A and vector b */
X = inverse(A)*B;

}

Function fourbarForce() can calculate the joint forces and required input torque to achieve
the desired motion of the four-bar linkage. The first eight input arguments of the function
fourbarForce() are arrays, r[i] for link length r;, thetal[i] for joint angle 6;, rg[i] and
delta[i] for the position vector r;e? of the center of gravity, omegal[i] for angular velocity
w;, alpha[i] for angular acceleration «;, m[i] for mass m;, and ig[i] for mass moment of inertia
I,,. t1 is the external load 7;. The output X from the function fourbarForce () contains the joint
forces and required input torque, which is passed to the calling function as an argument of com-
putational array using an assumed-shape array [11, 20]. How this function in the teaching toolbox
has been used in the class can be demonstrated by the following mechanism design problem given
in [7].

Problem 3: Link parameters and inertia properties of a four-bar linkage, as shown in
Figure 3, are given in the chart below.

Length Weight I, C. G.
Link r (in) (Ibf)  (Ibfinsec?) 74 (in) 4
1 12 — — —
2 4 0.8 0.012 2 0
3 12 2.4 0.119 6 0
4 7 1.4 0.038 3.5 0

The phase angle for link 1 is #; = 0. There is no external load. At one point the
input angular position #; = 150°, angular velocity we = 5 rad/sec ccw and angular
acceleration ap = 5 rad/ sec? cw, find the joint reaction forces and required input torque
at this moment.

Program 1 can be enhanced to solve Problem 3. Program 3 modified from Program 1 is simple
and easy to understand. The angular positions, velocities, and accelerations for coupler and output
links in Program 3 are calculated as described in the previous section. The joint reaction forces
and input torque are obtained by the function fourbarForce(). The output from Program 3 is
given:

X = 1.7998 2.83564 1.6998 1.5902 1.1648 -0.7431 -1.0278 2.1635 -10.3952
If the gravitation forces in function fourbarForce() for moving links are ignored as in Erdman
and Sandor [7], the output from Program 3 will become

X = 0.7040 0.0003 0.6040 0.0341 0.0690 0.1008 0.0680 -0.0805 -1.4276
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Figure 5: The required input torque versus time for the four-bar linkage.
5 Using Tool-Box for Mechanism Analysis and Design

The four-bar linkage is studied in great detail in the course of mechanism design as described in
the previous section. Programs presented in the previous section are some of examples in the
teaching toolbox; many more are available to students. These programs can be easily modified
by students to solve various analysis and design problems of the four-bar linkage. For example,
equation (31) in section 4.2.2 is formulated to find the required input torque to achieve the desired
motion (position, velocity, and acceleration) under the external load 7;. It can also be reformulated
from equations (19-27) to calculate the possible external load 7; with a given input torque Ts. In
this case, Program 3 can still be used, but function fourbarForce() needs to be modified. As
another example, students can combine Programs 2 and 3 to solve quite complicated analysis and
design problems for the four-bar linkage. In fact, there is a program called fourbarTorque in the
teaching toolbox. It can calculate the required input torque for the linkage specified in Problem 3.
Unlike in Problem 3, the input link 2 is rotated at a constant angular velocity we = 5 rad/sec in
the program fourbarTorque. The output from the program fourbarTorque is shown in Figure 5.
Students appreciate the fact that the input torque at different time stamp is important for model-
based real-time control of the mechanical system [23]. The program fourbarTorque can be easily
modified, with changing only one output statement, to obtain plots of joint reaction forces versus
input angle 6. If joint reaction forces exceed the maximum allowable bearing forces, students can
balance the linkage with counterweights to reduce the joint reaction forces. In many cases, the
force-balanced linkage may also reduce the maximum required input torque.

As described in the previous section, Program 1 named fourbarTheta3Theta4P can print out
the angular positions 3 and 6, as well as the position vector for coupler point P for a given four-
bar linkage at a specified input angle for 62, Program 2 named fourbarCouplerCurve can plot
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1
OE . T . - X
Figure 6: The slider-crank mechanism.

Program 4: Program slidercrankR1Theta3P for computing 7, €3 and position of the coupler
point P of a slider-crank mechanism.

the coupler curve as shown in Figure 2. The program fourbarTorque can plot the required input
torque as shown in Figure 5. These three related programs can be used to form a single script file
or a command file as described in section 2. For example, if the program named fourbarScript
contains the following programming statements

/* fourbarScript */

fourbarTheta3Theta4P
fourbarCouplerCurve

fourbarTorque

these three programs can be executed by only running the program fourbarScript in a Ch pro-
gramming environment. In this case, the program fourbarScript is treated as a UNIX shell script
file.

Programs in the teaching toolbox can also be easily modified to solve other mechanisms. For
example, displacement analysis of the slider-crank mechanism can be performed similarly using the
function complexSolver (), as shown in the solution procedure for the following problem.

Problem 4: For the slider-crank mechanism shown in Figure 6, if ro = 1",73 = 5", 1, =
2" and 8 = 30°, find the displacement r; of the slider and position (zp,yp) of coupler
point P when 6y = 45°,

The loop-closure equation for the slider-crank mechanism shown in Figure 6 can be formulated as
r1et = roet®  ryetfs (32)
Equation (32) can be written in the standard form (4),
r1ef1 — rgei® = pyei? (33)

Unknown variables r; and 63 in equation (33) can be readily solved using function complexSolver().
Program 1 can be easily modified to solve Problem 4. The output of Program 4 that is modified
from Program 1 is as follows:
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rl = 5.657, thetad3 = -0.142, P = complex( 2.563, 1.452)
rl = -4.248, thetad = -3.000, P = complex(-0.866,-0.528)

The offset slider-crank mechanism and its kinematic inversions such as rotating-slide, oscillating
slide, and stationary slide can be treated similarly. Program 4 can be modified to handle these
variations of the slider-crank mechanism with options provided by the user through the command-
line interface of the main routine main(int argc, char **argv). More complicated single-loops
such as geared five-bar linkage can be analyzed in the same manner. The complexity of a mechanism
increases when a four-bar linkage is combined with a slider-crank mechanism or its kinematic
inversions. But it can be easily handled by a computer program. For example, if the crank in
Figure 6 is attached to the output link of the four-bar linkage in Figure 1, the displacement for
the slider can be formulated by two equations (3) and (33), which can be solved numerically with
a program modified from Programs 1 and 4.

Analysis of more complicated mechanisms such as Watt six-bar linkage and Stephenson six-
bar linkage can be performed in the same manner. For example, there are multiple loops for a
Stephenson six-bar linkage, two loop-closure equations are required. In this case, the function
complexSolver () will be called twice in order to solve the displacement analysis problem. Several
programs for analysis and design of these popular mechanisms have been developed in the teaching
toolbox for student learning. Students can easily modify the source codes to solve the various
analysis and design problems.

6 Conclusions

The Ch programming environment is designed for both experienced and novice users. It has been
designed as a superset of ANSI C with incorporation of programming features of FORTRAN and
many other programming languages and software packages. The Ch programming environment and
programming features related to teaching and student learning have been presented in this paper.
To accelerate the process of developing Ch as a pedagogically effective programming environment for
teaching and learning, a pilot teaching project — using Ch in an undergraduate course, Computer-
Aided Mechanism Design — was conducted at the University of California, Davis in Fall 1993. At
the end of the project, we conducted anonymous student evaluations in using the Ch programming
language. In summary, students like the simplicity of the Ch programming language, its similarity
to FORTRAN, built-in complex data type, computational arrays, a rich set of built-in polymorphic
functions, and fast interactive system response without compilation [24]. Most students in the class
even liked Ch better than C and FORTRAN, they wanted to continue to use Ch as their primary
language for scientific programming. Considering the fact that this is the first time Ch was used in
a classroom teaching, the future of developing Ch as a pedagogically effective teaching and learning
tool is very promising.

Although the presentation about integration of Ch with mechanism design is specific, the Ch
programming environment and ideas presented in the paper are general, and they are applicable to
teaching of many other subjects in engineering as well. Currently, we are developing more teaching
toolboxes for instructional improvement at both undergraduate and graduate levels.
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