
ChExcel User’s Guide

Version 1.2

How to Contact SoftIntegration

Mail SoftIntegration, Inc.
216 F Street, #68
Davis, CA 95616

Phone + 1 530 297 7398
Fax + 1 530 297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright c©2001-2005 by SoftIntegration, Inc. All rights reserved.
Revision 1.2.0, October 2006

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this document may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of SoftIntegration, Inc.

Ch, SoftIntegration, and One Language for All are either registered trademarks or trademarks of SoftInte-
gration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows, Windows 95, Win-
dows 98, Windows Me, Windows NT, Windows 2000, Windows XP, and Excel are trademarks of Microsoft
Corporation. Other product or brand names are trademarks or registered trademarks of their respective hold-
ers.

ii

Typographical Conventions

The following list defines and illustrates typographical conventions used as visual cues for specific elements
of the text throughout this document.

• Interface components are window titles, button and icon names, menu names and selections, and
other options that appear on the monitor screen or display. They are presented in boldface. A sequence
of pointing and clicking with the mouse is presented by a sequence of boldface words.

Example: Click OK

Example: The sequence Start->Programs->Ch5.0->Ch indicates that you first select Start. Then
select submenu Programs by pointing the mouse on Programs, followed by Ch5.0. Finally, select
Ch.

• Keycaps, the labeling that appears on the keys of a keyboard, are enclosed in angle brackets. The label
of a keycap is presented in typewriter-like typeface.

Example: Press <Enter>

• Key combination is a series of keys to be pressed simultaneously (unless otherwise indicated) to
perform a single function. The label of the keycaps is presented in typewriter-like typeface.

Example: Press <Ctrl><Alt><Enter>

• Commands presented in lowercase boldface are for reference only and are not intended to be typed
at that particular point in the discussion.

Example: “Use the install command to install...”

In contrast, commands presented in the typewriter-like typeface are intended to be typed as part of an
instruction.

Example: “Type install to install the software in the current directory.”

• Command Syntax lines consist of a command and all its possible parameters. Commands are dis-
played in lowercase bold; variable parameters (those for which you substitute a value) are displayed
in lowercase italics; constant parameters are displayed in lowercase bold. The brackets indicate items
that are optional.

Example: ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

• Command lines consist of a command and may include one or more of the command’s possible
parameters. Command lines are presented in the typewriter-like typeface.

Example: ls /home/username

• Screen text is a text that appears on the screen of your display or external monitor. It can be a system
message, for example, or it can be a text that you are instructed to type as part of a command (referred
to as a command line). Screen text is presented in the typewriter-like typeface.

Example: The following message appears on your screen

usage: rm [-fiRr] file ...

ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

iii

• Function prototype consists of return type, function name, and arguments with data type and param-
eters. Keywords of the Ch language, typedefed names, and function names are presented in boldface.
Parameters of the function arguments are presented in italic. The brackets indicate items that are
optional.

Example: double derivative(double (*func)(double), double x, ... [double *err, double h]);

• Source code of programs is presented in the typewriter-like typeface.

Example: The program hello.ch with code

int main() {
printf("Hello, world!\n");

}

will produce the output Hello, world! on the screen.

• Variables are symbols for which you substitute a value. They are presented in italics.

Example: module n (where n represents the memory module number)

• System Variables and System Filenames are presented in boldface.

Example: startup file /home/username/.chrc or .chrc in directory /home/username in Unix and
C:\ > chrc or chrc in directory C:\ > in Windows.

• Identifiers declared in a program are presented in typewriter-like typeface when they are used inside
a text.

Example: variable var is declared in the program.

• Directories are presented in typewriter-like typeface when they are used inside a text.

Example: Ch is installed in the directory /usr/local/ch in Unix and C:/Ch in Windows.

• Environment Variables are the system level variables. They are presented in boldface.

Example: Environment variable PATH contains the directory /usr/ch.

iv

Table of Contents
Section Page

1 Introduction 1

2 Installing ChExcel 1

3 Getting Started 3
3.1 Configure Excel to Work with ChExcel . 3
3.2 The ChExcel Toolbar . 3

3.2.1 PutMatrix . 3
3.2.2 GetMatrix . 4
3.2.3 DeclVar . 4
3.2.4 EvalExpr . 4
3.2.5 RestartCh . 4

3.3 ChExcel Toolbar Examples . 4
3.4 ChExcel Functions . 7

3.4.1 Calling ChExcel Functions . 8
3.4.2 Argument Passing Conventions . 10

3.5 Data Management Functions . 12
3.6 Toolbar Buttons vs. Functions . 12

4 Variable Declaration Functions 12
4.1 ChDeclVar() . 12
4.2 ChPutMatrix() . 13
4.3 ChRemVar() . 13
4.4 Variable Declaration Function Examples . 13

5 Variable and Data Operation Functions 14
5.1 Functions Returning Scalar Values . 14

5.1.1 ChCalcExpr() . 14
5.1.2 ChFunc() . 14
5.1.3 Examples of Functions Returning Scalar Values . 14

5.2 Functions Returning Matrices . 15
5.2.1 ChCalcExprMatrix() . 15
5.2.2 ChFuncMatrix() . 15
5.2.3 Examples of Functions Returning Matrices . 15

5.3 Function ChGetMatrix() for Obtaining Both Scalar and Matrix Values from Variables 16
5.4 Function to Evaluate Both Scalar and Matrix Expressions 16

5.4.1 ChExprEval() . 16
5.4.2 Expression Evaluation Function Examples . 17

5.5 Function to Modify Matrices . 17
5.5.1 ChAppendMatrix() . 17
5.5.2 ChAppendMatrix Examples . 17

5.6 Functions Running Ch Programs . 18
5.6.1 ChRunScript() . 18
5.6.2 ChAppendScript() . 18
5.6.3 ChReinit() . 18

v

5.6.4 Examples of Functions Running Ch Programs . 19
5.7 Functions Capable of Plotting . 24

5.7.1 Plotting Examples . 24
5.8 User Defined Functions . 26

5.8.1 User Defined Function Example . 27

6 Using Win32 for Graphical User Interface 28

7 Programming in Visual Basic for Applications (VBA) with ChExcel 30
7.1 ChGetVar() . 30
7.2 ChPutVar() . 31
7.3 VBA Programming Examples . 31

8 Examples 38
8.1 Example 1: Data Interpolation . 38

9 References 45

10 Function Reference 45
10.1 ChExcel and VBA Functions . 46

ChAppendMatrix . 47
ChAppendScript . 48
ChCalcExpr . 49
ChCalcExprMatrix[VB] . 50
ChDeclVar . 51
ChExprEval . 52
ChFunc . 53
ChFuncMatrix[VB] . 54
ChGetMatrix[VB] . 55
ChPutMatrix . 56
ChReinit . 57
ChRemVar . 58
ChRunScript . 59

10.2 VBA Functions . 60
ChPutVar . 60
ChGetVar . 61

Index 62

vi

2 INSTALLING CHEXCEL

1 Introduction

Note: The source code of Excel and Ch programs for all examples described in this document are
available in CHEXCEL HOME/demos where CHEXCEL HOME is the home directory where ChEx-
cel is installed. By default, the home directory for ChExcel is C:/Program Files/SoftIntegration/ChExcel.
It is recommended that you try these examples while reading this document.

Although this documentation assumes that the user has experience in using both Microsoft Excel and
Ch, C/C++ programmers without prior experience of using Excel and Ch shall be able to use ChExcel after
reading this document. For more information on Ch and Excel, please refer to Ch User’s Guide[1] and
Microsoft’s Excel documentation, respectively.

This documentation describes how ChExcel is designed and used. It also provides examples with de-
tailed explanation to help you learn to develop your own ChExcel application programs.

What is ChExcel?
ChExcel is a Microsoft Excel add-in that embeds Ch (a C/C++ Interpreter) into Excel using Embedded

Ch as shown in Figure 1. ChExcel allows users to access the scripting and computation power of Ch from
Excel worksheets and Visual Basic for Applications (VBA). ChExcel lets you communicate and exchange
data between Ch and Excel. With ChExcel, Excel spreadsheets can be manipulated through C/C++ scripts.

The ChExcel Enviroment
The ChExcel add-in allows users to communicate between Ch and Excel workspaces as shown in Fig-

ure 1. Excel is a user interface to Ch, allowing the user to utilize Ch statemetns, functions, programs,
toolkits, and packages from Excel spreadsheets. The communication between Excel and Ch is controlled by
a few simple ChExcel functions, keeping the interface simple and easy to use.

A Ch session is initialized for each Excel process. This means that variables can be shared between
worksheets of the same workbook or even between workbooks in the same Excel workspace. If Ch is
reinitialized any time during the Excel session all variables will be erased. Ch can be initialized by either
calling the ChReinit() function or clicking the “RestartCh” button.

2 Installing ChExcel

This section describes installation of ChExcel as an Excel add-in.

System Requirements
ChExcel requires approximately 15 Mbyte disk space. It also requires the following software to be

installed.

• Microsoft Windows 98/ME/NT/2000/XP

• Microsoft Excel 97 or above

Installing ChExcel
Make sure to install Excel before trying to install ChExcel by executing the downloaded ChExcel toolkit

such as chexcel-1.0.0.exe.

1

2 INSTALLING CHEXCEL

Figure 1. Embedded Ch inside Microsoft Excel through ChExcel.

2

3 GETTING STARTED

Figure 2. The ChExcel toolbar.

3 Getting Started

3.1 Configure Excel to Work with ChExcel

To configure Excel to work with ChExcel follow the steps below:

1. Start Microsoft Excel.

2. Select Tools from the menu toolbar, click Add-Ins.

3. In the Add-In window check the ChExcel box and click OK.

4. The ChExcel toolbar should pop up on you Excel Taskbar as illustrated in Figure2.

There are two ways to try ChExcel.

1. To use ChExcel from ChExcel Toolbar in Excel, follow instructions in sections3.2 and 3.3.

2. To try ChExcel functions inside Excel spreadsheets described in the remaining sections, run spread-
sheets such as plot.xls located in CHEXCEL HOME/demos directory where CHEXCEL HOME is
the home directory for ChExcel such as C:/Program Files/SoftIntegration/ChExcel.

3.2 The ChExcel Toolbar

The ChExcel toolbar provides the user with fast access to commonly used ChExcel macro operations.
There are five buttons located on the toolbar: PutMatrix, GetMatrix, DeclVar, EvalExp, and
RestartCh as shown in Figure 2.

3.2.1 PutMatrix

The first toolbar button is PutMatrix, which allows the user to put a matrix from the Excel environment into
a Ch variable. A matrix can be either a one or two dimensional array in Ch. To use the button, first select
the cells that contain the data, then click the PutMatrix button. When the window opens, enter the name
of the variable you would like the data to be stored in, then click OK. This will store the data from the
spreadsheet into a Ch variable of type array double if a number of cells were selected, or into a Ch variable
of type double if a single cell was selected. If worksheet cells in a single row or column are selected, a one
dimensional array in Ch will be declared and initialized with the values in the worksheet cells. If a variable
of the specified name already exists in Ch, it will be first removed, then declared and initialized.

3

3 GETTING STARTED 3.3 ChExcel Toolbar Examples

3.2.2 GetMatrix

The button GetMatrix, lets the user retrieve a matrix or a single value from Ch and place it on the Excel
spreadsheet. Before using the button, first select a range where you would like the data to be placed. If
the variable is a one dimensional array it can be placed into the worksheet as either a row or a column.
To specify row format select a single row. To specify column format select a single column. If the range
selected is smaller than the dimensions of the data, the the data will overflow into the adjacet cells. If the
range selected is larger than the dimensions of the data, the data will only fill the required region. After
selecting the range, press the GetMatrix button and enter the Ch variable you would like to get, and click
OK.

3.2.3 DeclVar

The third button, DeclVar, allows the user to declare a variable in Ch syntax. The user can declare a variable
of any type and dimension. To declare an array of integers, simply type,
"array int MyArray[4][5]" in the area provided in the window. To declare a character string type,
"char * MyString".

3.2.4 EvalExpr

The fourth ChExcel toolbar button, EvalExpr, allows the user to evaluate a Ch expression. When the button
is pressed, the user can enter any valid Ch expression to pass to Ch. When entering an expression, make
sure that the variables being used have been declared beforehand.

3.2.5 RestartCh

The RestartCh button, allows the user to refresh the Ch session. This erases all variables and begins a new
Ch session. Be careful not to push this by accident because you cannot recover work from the previous Ch
session.

3.3 ChExcel Toolbar Examples

Put data into Ch Variable
1. Highlight the cells you want to initialize the variable with.
2. Click the PutMatrix button.
3. Type in the variable name and click OK.

4

3 GETTING STARTED 3.3 ChExcel Toolbar Examples

Manipulate Ch variable
1. Click the EvalExpr button.
2. Type in Ch Expression and click OK.

Retrieve data from Ch
1. Click the cell or select the range you would like the data to be put.
2. Click the GetMatrix Button.
3. Type in variable name and click OK.

5

3 GETTING STARTED 3.3 ChExcel Toolbar Examples

Declare and initialize Ch variable
1. Click the DeclVar button.
2. Type in variable declaration and click OK.

Manipulate Ch variable
1. Click the EvalExpr button.
2. Type in a Ch expression and click OK.

6

3 GETTING STARTED 3.4 ChExcel Functions

Retrieve data from Ch
1. Click the cell or select the range you would like the data to be put.
2. Click the GetMatrix Button.
3. Type in variable name and click OK.

3.4 ChExcel Functions

With ChExcel installed according to the preceding instructions, Ch will automatically be initialized when
Excel is started. There are two types of ChExcel functions. The first is the Link Management function.
They help control, initialize, and end Excel connections to Ch. The "RestartCh" button located in the
ChExcel toolbar is the only link managment function provided with ChExcel because there is the overhead
for running Ch in Excel is very small.

The second type of function is the Data Management function. This collection of functions allows the
user to place data from Excel into Ch, manipulate the data within Ch, and retrieve the data from Ch back
onto the Excel spreedsheet. These functions will be discussed in detail in the next section.

7

3 GETTING STARTED 3.4 ChExcel Functions

3.4.1 Calling ChExcel Functions

ChExcel functions can be placed into a worksheet cell in two ways. The first is to use the function wizard.
To enter a function using this method, click on the cell you want to function to be, then go to the menu and
click on Insert and Function. In the function wizard select the User Defined category. Click on the function
you want and the function will pop-up. Fill in the arguments and click OK.

For example, Figure 3 shows the Excel worksheet function menu. This menu lists all the worksheet
functions available to the user. ChExcel functions are located in the User Defined section. Figure4 shows
the function wizard for ChFunc() The function wizard lets the user input arguments one at a time. Figure5
shows the result of running the function wizard. In this figure, cell A1 has been assigned the function
ChFunc("pow",2,3).

Figure 3. The Excel function menu.

8

3 GETTING STARTED 3.4 ChExcel Functions

Figure 4. The ChFunc function wizard.

9

3 GETTING STARTED 3.4 ChExcel Functions

Figure 5. Result of the function wizard.

The second method of entering a ChExcel function into the worksheet is to type it in by hand as shown
in Figure 5. To use this method, go to the cell you want the function to be located. To indicate that you are
entering a function type "=" and enter the function and arguments. In the examples provided, all function
cells have a comment cell located to its right. The comment cell starts with "<==" and contains the exact
text of the function. To exexcute the function in a cell, move the cursor to the cell and then press function
key F2.

3.4.2 Argument Passing Conventions

ChExcel functions recognize four argument passing conventions illustrated in Figure6. Details of the ChEx-
cel functions used in the spreadsheet in Figure6 will be described in two sections 4.2. and 5.3.

The first convention is for passing ranges, range names and numeric values. You do not have to inclose
ranges, range names, or numeric values in double quotes. To pass the range A1:B2 to ChPutMatrix()
type A1:B2 directly into the field as follows, ChPutMatrix(A1:B2, "a"). To pass an Excel range
named ”MyRange” to ChPutMatrix() enter ChPutMatrix(MyRange, "x"). A value from a drop-
list in a cell such as cell B4 in Figure 6 can also be obtained. To pass numerical values, also type them
directly into the function field, like in ChFunc("pow",2,3), which is the equivalent of pow(2,3) in

10

3 GETTING STARTED 3.4 ChExcel Functions

C.

The second conversion is for passing variable names and function names. To pass a variable name or
function name to ChExcel, simply enclose it in a pair of double quotes. For example, to get the values for
variable a from Ch and place them in cells A11:B12, call the ChExcel function
ChGetMatrix(A11:B12, "a") with a in double quotes.

The third convention is for passing strings. If you pass all arguments as a single string, you must in-
close all embedded strings in two sets of double quotes. For example, ChExprEval() takes a single
string arguments. If you want to set the string variable s, with type string t or pointer to char, to the envi-
ronment variable CHHOME, then you must enclose CHHOME in double quotes. The resulting call would be
ChExprEval("s = getenv(""CHHOME""), which is the equivalent of s = getenv("HOME")
in Ch.

The last calling convention is for passing arguments as separate strings. For the function ChFunc and
ChFuncMatrix, each argument is passed into ChExcel as separate strings. If you want to pass the plot name
ChPlot to the function plotxy(), then you would need to enclose ChPlot in three sets of double quotes.
The resulting function will be ChFunc("plotxy","x","sin(x)+2*xy","""ChPlot""",
"""xlabel""","""ylabel""") , which is equivalent to plotxy(x, sin(x)+2*x,"ChPlot",
"xlabel", "ylabel") in Ch.

Figure 6. Example of argument passing conventions.

11

4 VARIABLE DECLARATION FUNCTIONS 3.5 Data Management Functions

3.5 Data Management Functions

Functions below can be used for handle data. These functions will be described in detail in sections4 and
5. Functions ChGetVar() and ChPutVar() are only available in VBA.

Function Description

ChAppendMatrix() Append data to a Ch matrix variable.
ChAppendScript() Append script to Ch session.
ChCalcExpr() Returns value of scalar Ch Expression.
ChCalcExprMatrix[VB]() Returns value of matrix Ch Expression.
ChDeclVar() Declare a Ch variable.
ChExprEval() Evaluate a Ch expression in Ch.
ChFunc() Evaluate a Ch function with return of scalar.
ChFuncMatrix[VB]() Evaluate a Ch function with return of array.
ChGetMatrix[VB]() Get scalar or matrix value of Ch variable and place in Excel.
ChGetVar() Get value of variable from Ch and place in VBA.
ChPutMatrix() Put Excel matrix or scalar value into Ch variable.
ChPutVar() Put value of a VBA variable into Ch variable.
ChRemVar() Remove variable from Ch.
ChReinit() Reinitialize Ch session.
ChRunScript() Run script in Ch session.

3.6 Toolbar Buttons vs. Functions

When using ChExcel, one might wonder what is the difference between using the toolbar buttons and the
ChExcel worksheet functions? To answer this question, we must take a closer look at the Excel environment.
In Excel there are two types of procedures: macros and functions. A macro can accept passed arguments, but
cannot return a value or be associated with a worksheet cell. A function can accept arguments, be associated
with a worksheet cell and return a value. The difference between the ChExcel toolbar buttons and ChExcel
functions is that the ChExcel toolbar buttons actually call macros and therefore cannot return values, but
only modify worksheet cells.

In general, if you want to save your work, you should use worksheet functions because they can be
invoked from worksheet cells. To retrieve the result the next time you open your Excel workbook, simply
recalculate the formulas in the correct order by pressing F2 and Enter on each cell. A macro can be used for
fast calculations and function calls, but once invoked only their results can be saved in the workbook.

4 Variable Declaration Functions

4.1 ChDeclVar()

The function ChDeclVar() is a worksheet function that declares a variable in Ch. This function takes a string
as an argument and will return 0 for success or #ERROR# on failure. The string argument must be a single

12

4 VARIABLE DECLARATION FUNCTIONS 4.2 ChPutMatrix()

Ch variable declaration. The declaration can be of any data type. The variable can also be initialize at this
time. Make sure that you only declare one variable per ChDeclVar() function. If you redeclare a variable
name it will overwrite the previous variable declaration, so be sure not to redefine variables by accident.

4.2 ChPutMatrix()

The function ChPutMatrix() places data from the Excel environment into a Ch variable. The function takes
two arguments, a range and a variable name. It returns 0 on success and #ERROR# on error. If a range is
passed to ChPutMatrix(), the data will be placed into a Ch variable of array double type with dimensions
corresponding to the Excel matrix. If a single cell is selected, the data will be placed into a Ch variable
of double type. If the variable name passed to ChPutMatrix() has been previously declared, the original
variable will be overwritten.

In Figure 6, the values in cells A1:B2 is placed in variable a by function call
ChPutMatrix(A1:B2, "a"), which is equivalent to the following declaration.

array double a[2][2]={10, 20,
11, 21};

The Excel variable MyRange contains A1:A6. Therefore, the values for cells A1:A6 are placed in variable
x of array type. The value 200 in drop-list in cell B4 is placed in variable c of double type by function call
ChPutMatrix(B4, "c"), which is equivalent to the following declaration.

double c = 200;

4.3 ChRemVar()

The function ChRemVar() removes a variable from the Ch session. ChRemVar() takes a variable name as
an argument. The function returns 0 if the variable is removed successfully, or #ERROR# on failure.

4.4 Variable Declaration Function Examples

Cell A1 in Figure 7 contains the ChDeclVar() function. It declares the variable i of int type. Variables can
also be declared with initialization. Cell A2 declares and initializes an integer computational array variable
a. The cell A7 contains the ChPutMatrix function. It takes the data from cells A1 through C5 and places
them in the Ch double array variable b. The cell A9 contains the ChRemVar function. This cell will remove
the variable a from the Ch session.

13

5 VARIABLE AND DATA OPERATION FUNCTIONS

Figure 7. Variable declaration.

5 Variable and Data Operation Functions

5.1 Functions Returning Scalar Values

5.1.1 ChCalcExpr()

ChCalcExpr() calculates a Ch expression of scalar type and returns the value of the expression. It takes
a string as an argument and can return a single value of data type double, float, short, char, int, or string.
ChCalcExpr() will return the value of the expression on success and #ERROR# on failure.

5.1.2 ChFunc()

The function ChFunc() makes a call to a Ch function and returns the value of the called function. ChFunc()
takes a function name and variable number of parameters as arguments. The function passed to ChFunc()
must have a return value of double , int, float, char, short, or string. This function can return a single value
of data type double, int, float, char, short, or string. ChFunc() will return the value of the function on success
and #ERROR# on failure.

5.1.3 Examples of Functions Returning Scalar Values

The cells A5, A6 and A9 in Figure 8 evalute Ch functions given numeric and string arguments. Cells A7 and
A8 evaluate Ch functions given Excel ranges. Cell F6 evalutes the Ch function hypot(), which returns the
hypotenues of a triangle given two lengths. Cell 7 adds values in the range of A1 to C3 using Ch numerical
function sum(). Cells F8 through F10 give examples of ChCalcExpr(). Cell F8 returns an integer, cell F9
returns a double, and F10 returns a string.

14

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.2 Functions Returning Matrices

Figure 8. Function returning scalar values.

5.2 Functions Returning Matrices

5.2.1 ChCalcExprMatrix()

ChCalcExprMatrix() evaluates an expression returning a matrix, and places the matrix on the spreedsheet.
The function takes two arguments, a Ch expression and a range. The matrix can be either a one or two
dimensional array in Ch. The expression is evaluated and the result is placed in the specified range. The
specified range must have the exact same dimensions as the result or the data will be incorrectly formatted.
Make sure not to include the function cell into the range that you pass to ChCalcExprMatrix(), or the function
will be overwritten. This function returns 0 on success and #ERROR# on failure.

5.2.2 ChFuncMatrix()

ChFuncMatrix() calls a Ch function and returns the resulting matrix. The function takes a Ch function name,
range, and a variable number of parameters as arguments. The Ch function passed to ChFuncMatrix() must
return a matrix of double or integer type. ChFuncMatrix() will evaluate the function and place the returned
matrix into the specified range. The specified range must have the exact same dimensions as the result or the
data will be incorrectly formatted. Make sure not to include the function cell into the range that you pass to
ChFuncMatrix(), or the function will be overwritten. This function returns 0 on success and #ERROR# on
failure.

5.2.3 Examples of Functions Returning Matrices

Cell A7 in Figure 9 calculates the addition of two matricies, r and p, and returns the result to cells A9
through C11. Cell A14 calls the Ch function inverse() and returns the inverse of the range A1:B2 to
A16:B17. Cell F10 returns the matrix, resulting from the function transpose() for cells A1 through C2
to F12 through G14.

15

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.3 Function ChGetMatrix() for Obtaining Both Scalar and Matrix Values from Variables

Figure 9. Function returning matrices.

5.3 Function ChGetMatrix() for Obtaining Both Scalar and Matrix Values from Variables

ChGetMatrix() retrieves the value of a Ch variable and places it into the Excel worksheet as shown in
Figure 6. The function takes two arguments, a range and a variable name. The Ch variable will be placed in
the specified range. If the variable is a scalar, it will be placed in the specified cell in the first argument. If
the variable is a one dimensional array it can be placed into the worksheet as either a row or a column. To
specify row format select a single row range. To specify column format select a single column range. If the
Ch matrix is smaller than the specified range, it will only fill the required range. If the Ch matrix is larger
than the specified range, it will overflow into the adjacent cells. Make sure not to include the function cell
into the range that you pass to ChGetMatrix(), or the function will be overwritten. This function returns 0
on success and #ERROR# on failure.

In Figure 6, the values for two-dimensional array a are placed in cells A12:B13 and A15:B16. The
values for one-dimensional array x is placed in cells A18:F16. The value for scalar c is placed in cell D14.

5.4 Function to Evaluate Both Scalar and Matrix Expressions

5.4.1 ChExprEval()

ChExprEval() evaluates a Ch expression. It takes a single expression as an argument, and returns 0 on
success and #ERROR# on failure. This function can be used to initialize variables, modify variables, call
functions, and modify the Ch session.

16

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.5 Function to Modify Matrices

5.4.2 Expression Evaluation Function Examples

The example in Figure 10 illustrates modifying Ch variables using the ChExcel function ChExprEval().
Cell A5 declares the variable a, and initializes it to the data in cells A1 through C3. The function
ChGetMatrix() in cell A6 adds 5 to each element in the matrix a. The value of a is placed onto the
spreadsheet using ChGetMatrix(). Cell E6 evaluates the expression "a = transpose(a)" and sets the
value of a equal to its transpose. The result is then returned to the spreadsheet by ChGetMatrix().

Figure 10. Expression evaluation.

5.5 Function to Modify Matrices

5.5.1 ChAppendMatrix()

The function ChAppendMatrix() lets the user append data to Ch matrices. This function takes a Ch variable
name, a range, and 0 or 1 as arguments. The last arguments specify where on the Ch variable the range will
be appended: 0 for horizontal or 1 for vertical. ChAppendMatrix() will takes the range and append it to the
right or to the bottom of the Ch variable. If you want to append a range to the right of a Ch variable make
sure the number of rows match. If you want to append a range to the bottom of a Ch matrix, make sure the
number of columns match. This function returns 0 on success and #ERROR# on failure.

5.5.2 ChAppendMatrix Examples

The cell A6 in Figure 11 appends the range E1 to F3 to the right of the Ch variable r. The result is placed
on the spreadsheet using the function ChGetMatrix(). The cell G6 appends the range E1 to G2 to the
bottom of the Ch variable p.

17

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.6 Functions Running Ch Programs

Figure 11. Matrix modification.

5.6 Functions Running Ch Programs

5.6.1 ChRunScript()

The function ChRunScript(), allows the user to run a Ch program. This function reinitializes the Ch session
so all variables in the current session are erased. The user will input the name of the program and ChExcel
will execute it from the function main() if it exists. Any global variable declared in the program will then
be accessible to ChExcel. Also, any functions that have been declared can now be used by the ChExcel.
The program must reside in Ch’s program path specified by the Ch variable _path or the user must enter a
complete path to the program. This function is best used to begin a ChExcel session to import variables from
Ch to Excel. An example of a program run with ChRunScript() in ChExcel is provided in section5.6.4.

5.6.2 ChAppendScript()

The function AppendScript, allows the user to run a Ch script in the current session. The user will input
the name of the script and ChExcel will execute it. Any global variable declared in the script will then be
accessible to ChExcel. Also, any functions that have been declared can now be used by the ChExcel. Ch
variables cannot be redeclared in the Ch script so make sure not to use variable names that currently exist in
ChExcel. The script must reside in Ch’s program path specified by the Ch variable _path or the user must
enter a complete path to the script. This function is best used to transfer variables to and from Ch and Excel.
An example of a program run with ChAppendScript() in ChExcel is provided in section5.6.4.

5.6.3 ChReinit()

The function ChReinit() reinitializes the Ch environment. When Ch is reinitialized all the variables from the
previous session are erased. This function takes no arguments and returns 0 for success and #ERROR# for
failure.

18

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.6 Functions Running Ch Programs

5.6.4 Examples of Functions Running Ch Programs

The Ch script in Program 1 consists of four global variables and two functions. The function ChRunScript()
will begin running in the function main(). The function main() modifies the global variables and pro-
duces a plot.

#include <numeric.h>
#include <array.h>

double total;
array double val[2][3];
array double time[10], sine[10];

int main()
{

linspace(val, 1, 6);
total = sum(val);
linspace(time, 0, M_PI);
sine = sin(time);
plotxy(time,sine,"Sin Plot", "time", "sin");
return 0;

}

double func(double x, double y)
{

return 2*hypot(x,y);
}

Program 1. Script for ChRunScript (runscript.ch).

Figure 12 shows the Excel worksheet runscript.xls. Cell E1 contains the ChRunScript() function that
runs the program runscript.ch. Cells E2 through E5 use the ChExcel function ChGetMatrix() to retrieve
data from Ch and place them on the Excel spreadsheet. Cell E6 calls the function func() defined in
the program runscript.ch. Figure 13 shows the worksheet runscript.xls after all the functions have been
evaluated. Figure 14 shows the plot generated by runscript.ch.

19

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.6 Functions Running Ch Programs

Figure 12. Before evaluation of ChRunScript.

20

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.6 Functions Running Ch Programs

Figure 13. After evaluation of ChRunScript.

21

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.6 Functions Running Ch Programs

Figure 14. Plot generated by (runscript.ch) and (appendscript.ch).

The Ch script appendscript.ch in Program 2 modifies variables declared in the current Ch session. The
worksheet appendscript.xls, shown in Figure15, declares three Ch variables using the functions ChPutMatrix()
and ChDeclVar(). Cell E5 contains the ChExcel function ChAppendScript() which runs the script
appendscript.ch. Figure 16 shows the resulting worksheet after the ChGetMatrix() functions have been
evaluated. Cell E8 displays the return value of the function func() defined in appendscript.ch. The plot
generated by appendscript.ch is shown in Figure14.

22

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.6 Functions Running Ch Programs

#include <numeric.h>
#include <array.h>

/* these variables are declared in ChExcel functions */
//array double val[2][3];
//array double time[10], sine[10];

double total;
total = sum(val);
sine = sin(time);
plotxy(time,sine,"Sin Plot", "time", "sin");

double func(double x, double y) {
return 2*hypot(x,y);

}

Program 2. Script for ChAppendScript (appendscript.ch).

Figure 15. Before evaluation of ChAppendScript.

23

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.7 Functions Capable of Plotting

Figure 16. After evaluation of ChAppendScript.

5.7 Functions Capable of Plotting

There are a few ChExcel functions that are capable of producing plots. The first is ChExprEval(), which
can evaluate the Ch function plotxy() and plotxyz(). The second function that can produce plots is
ChFunc() which can call plotting functions and pass them arguments.

5.7.1 Plotting Examples

In the following example, three plots are generated using ChExprEval() and ChFunc(). The cells A1
and A2 declare the variables x and y. Cell A3 evaluates the linspace() function to fill the array x. Cell
A4 calculates the values for the array y. Cell A5 evaluates the function plotxy() with the arguments x
and y. Cell A6 evaluates the function plotxy() with the three additional arguments to specify the title,
and the axis labels. Cell A7 uses ChExcel function ChFunc() to call Ch function plotxy() to generate a
plot.

24

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.7 Functions Capable of Plotting

Figure 17. Plotting functions.

Figure 18. Plot generated by cell A5.

25

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.8 User Defined Functions

Figure 19. Plot generated by cell A6.

Figure 20. Plot generated by cell A7.

5.8 User Defined Functions

A user defined function is a function file that contains a single function definition. The file and function
must have the same name and the file must end in .chf. The file also must be in the Ch’s function path
specified in the system variable fpath in Ch. For ChExcel to be able to call a user defined function, the
file must conform to a strict structure. The file must be in the following order:

1. Preprocessor directives.

26

5 VARIABLE AND DATA OPERATION FUNCTIONS
5.8 User Defined Functions

2. Function declaration.

3. Global variable declaration.

4. Function definition.

There are a few ChExcel functions that are capable of running user defined function. ChFunc() can
evaluate a user defined function and return a scalar value. ChFuncMatrix(), and ChCalcExpr() can
evaluate a function and return a matrix to the spreadsheet. ChExprEval() can also evaluate a user defined
function.

5.8.1 User Defined Function Example

Program 3 defines a function xfunc() in function file xfunc.chf. The program begins by including the
header file numeric.h with function prototype for numerical function sum(), followed by function prototype
for xfunc() and declaration of the global variable total. The function xfunc() takes an integer as an
argument, assigns the sum for each element of the array val declared in ChExcel to total. and returns
the product of the integral argument and value of variable total.

#include <numeric.h>

/* function prototype right after preprocessing directives */
double xfunc(int n);
/* variable val is declared in ChExcel */
//array double val[2][3];
/* declare the global variables here to be retrieved by ChExcel Functions */
double total;

double xfunc(int n)
{

total = sum(val);
return n*total;

}

Program 3. User defined function(xfunc.chf)).

Figure 21 shows the spreadsheet xfunc.xls. Cell E1 uses ChExcel function ChPutMatrix() to place the
matrix in A2 through C3 into the variable val. Cell E2 uses ChExcel function ChFunc() to call the Ch
function xfunc() with the argument 10. The returned value from calling function xfunc() in function file
xfunc.chf is placed in Cell E2. Cell E3 uses ChExcel function ChGetMatrix() to get the value of variable
total in Ch and places it in Cell B5. The resulting spreadsheet is shown in Figure22.

27

6 USING WIN32 FOR GRAPHICAL USER INTERFACE

Figure 21. Spreadsheet before running function file xfunc.chf.

Figure 22. Spreadsheet after running function file xfunc.chf.

6 Using Win32 for Graphical User Interface

Ch supports Win32 API. Ch program with Win32 API can be invoked as a script from Excel using ChExcel.
The user defined function messagefunc() in Program4 uses Win32 API MessageBox() to display a message.
When function messagefunc() is invoked by ChExcel function ChFunc() from a spreadsheet a message box
will be displayed as shown in Figure 23. The other Win32 APIs can also be used inside a Ch script. Fig-
ure 24 displays dialog boxes created when Ch script dialogbox.ch is invoked from an Excel spreadsheet
dialogbox.xls. created from.

28

6 USING WIN32 FOR GRAPHICAL USER INTERFACE

#include <numeric.h>
#include <windows.h>
#define APP_NAME "MessageBox Title"

/* function prototype right after preprocessing directives */
double messagefunc(int n);
/* these variables are declared in ChExcel functions */
//array double val[2][3];
///* declare the global variables here to be retrieved by ChExcel Functions */
double total;

double messagefunc(int n) {
CHAR string[100];

total = sum(val);
sprintf(string, "This is a message generated from MessageBox().\n"

"total = %f\n", total);
MessageBox(NULL, string, APP_NAME, MB_OK | MB_SYSTEMMODAL | MB_NOFOCUS);
return n*total;

}

Program 4. User defined function messagefunc.chf using Win32 API MessageBox().

Figure 23. Spreadsheet and messagebox using MessageBox() in Win32 API.

29

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL

Figure 24. Spreadsheet and dialog boxes from Win32 API.

7 Programming in Visual Basic for Applications (VBA) with ChExcel

VBA is a convenient Excel programming tool. With ChExcel you can use the power of Ch in VBA. To open
the VBA editor in Excel press ALT + F11. To use ChExcel functions within an Excel VBA program, you
need to go to the tools menu of the VBA editor and click on References. In the References window, check
the box next to ChExcel. Excel allows macros to be defined within spreadsheets and modules, while user
defined Excel functions can only be defined within modules. ChExcel provides two additional functions to
interact between the VBA environment and Ch.

7.1 ChGetVar()

The first of the functions is ChGetVar. ChGetVar takes a Ch variable and a VBA variable as arguments. It
then places the data or matrix in the Ch variable into the VBA variable. The VBA variable must be declared
with the same dimensions as the VBA variable or it will produce errors.

30

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.2 ChPutVar()

7.2 ChPutVar()

The second of the function is ChPutVar. This function takes a Ch variable and a VBA variable as arguments
and places the data or matrix from the VBA variable into the Ch variable. ChPutVar declares the Ch variable
passed to it, which overwrites any previous declarations of the variable name.

7.3 VBA Programming Examples

The macros PlotCh, AppendScript, and RunScript are located in the ThisWorkbook sheet for Excel program
VBA.xls as shown in Figure 25. Figure 26 shows these macros in the Excel VBA Editor. Macros located
in this sheet are accessible from all worksheets in the workbook. To run a macro from the VBA editor, click
on the macro definition so that the macro name shows up in the upper right window and click the run button
as shown in Figure 25. To run a macro from a worksheet, go to the Tools menu click on Macro and then
click on Macros. From the macro menus select the macro you wish to run and click Run. The macro menu
is shown in Figure 25.

Figure 25. Excel macro menu.

31

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.3 VBA Programming Examples

Figure 26. Excel VBA editor.

32

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.3 VBA Programming Examples

Public Sub PlotCh()
Dim a(100) As Double
Dim b(100) As Double
Dim i As Double

For i = 0 To 100
a(i) = i / 100 * 2 * 3.1415
b(i) = ChFunc("sin", a(i))

Next
’put VBA variable "a" into Ch variable "x"
Call ChPutVar("x", a)
’put VBA variable "b" into Ch variable "y"
ChPutVar "y", b ’same as Call ChPutVar("y", b)

Call ChFunc("plotxy", "x", "y", """Sin Plot""", """x""", """y""")
End Sub

Program 5. VBA macro (PlotCh).

Figure 27. Plot generated by macro PlotCh.

33

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.3 VBA Programming Examples

The macro PlotCh, shown in Program 5, begins by declaring two VBA arrays. The arrays are then
filled with values using the ChExcel function ChFunc(). The VBA variables are placed into the Ch
environment by the function ChPutVar(). A plot is then generated from the Ch variables x and y by the
function ChFunc().

The macro AppendScript is shown in Program 6. It begins by reinitializing the Ch session so there
won’t be any variable name conflicts. It then places the data in the range B5:B14 into the Ch variable time.
The reason that we have to cast the string "B5:B14" into the range variable rng1 is because the ChExcel
function ChPutMatrix takes a range as the first argument. The macro then declares the array sine and the
variable val. ChAppendScript is then called to run the script appendscript.ch, shown in Program2. The
matrices sine and total are then places onto the spreadsheet. Figure28 shows the spreadsheet in Sheet1
before the macro AppendScript is run and Figure 29 shows the spreadsheet after AppendScript is
run.

Public Sub AppendScript()
Dim rng1 As Range
Dim rng2 As Range

’Function called to avoid using RestartCh button
Call ChReinit

’Put data in range B5:B14 into Ch variable "time"
Set rng1 = Range("B5: B14")
ChPutMatrix rng1, "time"

’Declare variable
ChDeclVar "array double sine[10]"

Set rng2 = Range("E10:G11")
ChPutMatrix rng2, "val"

ChAppendScript "appendscript.ch"

ChGetMatrixVB "C5:C14", "sine"
ChGetMatrixVB "F13", "total"

End Sub

Program 6. VBA macro (appendscript).

34

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.3 VBA Programming Examples

Figure 28. Before running appendscript.

35

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.3 VBA Programming Examples

Figure 29. After running appendscript.

The macro RunScript is shown in Program 7. It begins by calling ChRunScript to run the script
runscript.ch, shown in Program 1. A few variables are then retrieved from Ch and placed onto the
spreadsheet. The VBA variable is then assigned the value returned from the function func() and a message
box is displayed showing the value of result. Figure30 shows the spreadsheet in Sheet2 before the macro
RunScript is run and Figure 31 shows the spreadsheet after RunScript is executed.

36

7 PROGRAMMING IN VISUAL BASIC FOR APPLICATIONS (VBA) WITH CHEXCEL
7.3 VBA Programming Examples

Public Sub RunScript()
Dim result As Double

’Run script "runscript.ch"
ChRunScript "runscript.ch"

’Retrieve values from Ch
ChGetMatrixVB "B6:B14", "time"
ChGetMatrixVB "C6:C14", "sine"
ChGetMatrixVB "E9:F10", "val"
ChGetMatrixVB "F12", "total"

’Call func() declared in runscript.ch
result = ChFunc("func", 3, 4)
MsgBox "ChFunc(""func"", 3, 4) = " & result

End Sub

Program 7. VBA macro (runscript).

Figure 30. Before running runscript.

37

8 EXAMPLES

Figure 31. After running runscript.

8 Examples

8.1 Example 1: Data Interpolation

The Ch script in Program 8 performs interpolation for two dimensional data. Interpolation is a method of
estimating intermediate values between data points. Ch provides the function interp2() to interpolate
two dimensional data. The function interp2() takes seven arguments. The first three arguments are
matrices to be filled with interpolated data. The second set of three matricies contain known data points.
The last argument specifies the type of interpolation to perform.

The script chinterp.ch is a stand alone Ch program. It begins by declaring four matrices and
filling them with data. It then calls the function interp2() and fills the two dimensional matrix za with
interpolated data.

38

8 EXAMPLES 8.1 Example 1: Data Interpolation

#include <chplot.h>
#include <numeric.h>

int m=12, n = 8;
array double x[m],y[n], z[m][n],zd[m*n];
int i,j;

/* Construct data set of the peaks function */
linspace(x, -3, 3);
linspace(y, -4, 4);
for(i=0; i<m; i++) {

for(j=0; j<n; j++) {
z[i][j] = 3*(1-x[i])*(1-x[i])*

exp(-(x[i]*x[i])-(y[j]+1)*(y[j]+1))
- 10*(x[i]/5 - x[i]*x[i]*x[i]-
pow(y[j],5))*exp(-x[i]*x[i]-y[j]*y[j])
- 1/3*exp(-(x[i]+1)*(x[i]+1)-y[j]*y[j]);

printf("%5.2f ", z[i][j]);
}
printf("\n");

}

zd = (array double[m*n])z;

/* For interpolated data */
int mx = 20, ny = 16;
array double xa[mx],ya[ny], za[mx][ny], zad[mx*ny];
class CPlot plot;

linspace(xa, -3, 3);
linspace(ya, -4, 4);

/* 2-dimensional cubic spline interpolation*/
interp2(za,xa,ya,x,y,z,"spline");

/* add offset for display */
zad = (array double[mx*ny])za + 100;

plot.data3D(x, y, zd);
plot.data3D(xa, ya, zad);
plot.label(PLOT_AXIS_X, "x");
plot.label(PLOT_AXIS_Y, "y");
plot.label(PLOT_AXIS_Z, "z");
plot.ticsLevel(0);
plot.text("Spline", PLOT_TEXT_RIGHT,3.5,3.5,120);
plot.text("Original", PLOT_TEXT_RIGHT,3.5,3.5,20);
plot.plotType(PLOT_PLOTTYPE_LINES,0,1,1);
plot.plotType(PLOT_PLOTTYPE_LINES,1,1,1);
plot.plotting();

Program 8. Script for ChRunScript (chinterp.ch).

The worksheet chinterp.xls is shown in Figure 32. It starts by running the script chinterp.ch with
ChRunScript("chinterp.ch"). If then retrieves the two matricies z and za and places them on
the spreadsheet. The result of the evaluation is shown in Figure 33. The interpolation plot is shown in
Figure 34.

39

8 EXAMPLES 8.1 Example 1: Data Interpolation

Figure 32. Before evaluation of ChRunScript.

40

8 EXAMPLES 8.1 Example 1: Data Interpolation

Figure 33. After evaluation of ChRunScript.

41

8 EXAMPLES 8.1 Example 1: Data Interpolation

Figure 34. Plot generated by chinterp.ch.

The worksheet excelinterp.xls displayed in Figure 35 runs the script excelinterp.ch. The worksheet be-
gins by declaring a variable z. The function in cell A15 puts the data located in A2 through H13 into the Ch
variable z.

The script excelinterp.ch, shown in Program 9, uses the Ch variable z to generate the matrix za. The
dimensions m and n for row and column of array z are obtained by function shape().

The plot produced by excelinterp.ch is shown in Figure 34. The resulting spreadsheet is shown in
Figure 36.

42

8 EXAMPLES 8.1 Example 1: Data Interpolation

#include <chplot.h>
#include <numeric.h>

/* variable z is declared inside ChExcel function */
//array double z[m][n];

//int m=12, n = 8;
array int dim[2] = shape(z);
int m = dim[0], n = dim[1];

/* For plotting of the original data */
array double x[m],y[n], zd[m*n];
zd = (array double[m*n])z;
linspace(x, -3, 3);
linspace(y, -4, 4);

/* For interpolated data */
int mx = 20, ny = 16;
array double xa[mx],ya[ny], za[mx][ny], zad[mx*ny];
class CPlot plot;

linspace(xa, -3, 3);
linspace(ya, -4, 4);

/* 2-dimensional cubic spline interpolation*/
interp2(za,xa,ya,x,y,z,"spline");

/* add offset for display */
zad = (array double[mx*ny])za + 100;

plot.data3D(x, y, zd);
plot.data3D(xa, ya, zad);
plot.label(PLOT_AXIS_X, "x");
plot.label(PLOT_AXIS_Y, "y");
plot.label(PLOT_AXIS_Z, "z");
plot.ticsLevel(0);
plot.text("Spline", PLOT_TEXT_RIGHT,3.5,3.5,120);
plot.text("Original", PLOT_TEXT_RIGHT,3.5,3.5,20);
plot.plotType(PLOT_PLOTTYPE_LINES,0,1,1);
plot.plotType(PLOT_PLOTTYPE_LINES,1,1,1);
plot.plotting();

Program 9. Script for ChAppendScript (excelinterp.ch).

43

8 EXAMPLES 8.1 Example 1: Data Interpolation

Figure 35. Before evaluation of ChAppendScript.

44

10 FUNCTION REFERENCE

Figure 36. After evaluation of ChAppendScript.

9 References

1. SOFTINTEGRATION, INC., 2003. The Ch Language Environment User’s Guide.
http://www.softintegration.com.

10 Function Reference

ChExcel and VBA Functions

Function Description

45

ChExcel and VBA Functions 10.1 ChExcel and VBA Functions

ChAppendMatrix() Append data to a Ch matrix variable.
ChAppendScript() Append script to Ch session.
ChCalcExpr() Returns value of scalar Ch Expression.
ChCalcExprMatrix[VB]() Returns value of matrix Ch Expression.
ChDeclVar() Declare a Ch variable.
ChExprEval() Evaluate a Ch expression in Ch.
ChFunc() Evaluate a Ch function with return of scalar.
ChFuncMatrix[VB]() Evaluate a Ch function with return of array.
ChGetMatrix[VB]() Get scalar or matrix value of Ch variable and place in Excel.
ChPutMatrix() Put Excel matrix or scalar value into Ch variable.
ChRemVar() Remove variable from Ch.
ChReinit() Reinitialize Ch session.
ChRunScript() Run script in Ch session.

VBA Functions

Function Description

ChGetVar() Get value of variable from Ch and place in VBA.
ChPutVar() Put value of a VBA variable into Ch variable.

10.1 ChExcel and VBA Functions

46

ChExcel and VBA Functions ChAppendMatrix

ChAppendMatrix

Synopsis in Worksheet

int ChAppendMatrix(“ChVar”, Range, Direc);

Synopsis in VBA

int ChAppendMatrix(“ChVar”, Range, Direc);

Purpose
Append data to Ch variable.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
ChVar Ch variable name
Range Excel Range
Direc Direction: 0 for right, 1 for bottom

Description
The function ChAppendMatrix() takes a Ch variable name, a range of cells, and a direction as arguments.
ChVar must be previously declared. The data in Range is appended to the right of the variable ChVar if
Direc is 0, or to the bottom if Direc is 1.

Examples

ChAppendMatrix("x", A3:B5, 0)

Appends the data in range A3:B5 to the right of the Ch variable x.

47

ChExcel and VBA Functions ChAppendScript

ChAppendScript

Synopsis in Worksheet

int ChAppendScript(“ScriptName”);

Synopsis in VBA

int ChAppendScript(“ScriptName”);

Purpose
Append script to Ch Session.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
ScriptName Ch script name

Description
The function ChAppendScript() takes a script name as an argument. The script will be run in the current
Ch session. After the script is run, any global variable declared in the script will then be accessible to ChEx-
cel. Also, any functions that have been declared can now be used by the ChExcel. Ch variables cannot be
redeclared in the Ch script. The script must reside in Ch’s program path specified by the Ch variable _path
or the user must enter a complete path to the script. This function is best used to transfer variables between
Ch and Excel.

Examples

ChAppendScript("Myscript.ch")

Appends the script Myscript.ch to the current Ch session.
ChAppendScript("C:/Programs/Scripts/Myscript.ch")

Appends the script Myscript.ch to the current Ch session.

48

ChExcel and VBA Functions ChCalcExpr

ChCalcExpr

Synopsis in Worksheet

VARIANT ChCalcExpr(“Expr”);

Synopsis in VBA

VARIANT ChCalcExpr(“Expr”);

Purpose
Evaluate a Ch expression evaluating to an integer, double or string value.

Return Value
This function returns the value of the expression on success, #ERROR# on failure.

Parameters
Expr Ch Expression

Description
The function ChCalcExpr() takes a Ch expression as an argument. If the expression contains a function, it
should be located in the current session or in a function file specified by the system variable fpath in Ch.
The expression Expr must evaluate to either an integer, double, or string data type.

Examples

ChCalcExpr("5 * 4 + (pow(2,3) / 2)")

Returns the value 24.

49

ChExcel and VBA Functions ChCalcExprMatrix[VB]

ChCalcExprMatrix[VB]
Synopsis in Worksheet

int ChCalcExprMatrix(“Expr”, Range);

Synopsis in VBA

int ChCalcExprMatrixVB(“Expr”, Range);

Purpose
Evaluate a Ch expression returning a integer or double matrix.

Return Value
This function returns the value 0 on success, #ERROR# on failure.

Parameters
Expr Ch Expression
Range Excel Range

Description
The function ChCalcExprMatrix() takes a Ch expression and a range as an arguments. If the expression contains
a function, it should be located in the current session or in a function file specified by the system variable fpath in
Ch. The result of the expression is placed in Range. The expression Expr must evaluate to either an integer, or double
matrix.

Examples

ChDeclVar(A1:C3, "a")
ChDeclVar(D1:F3, "b")
ChCalcExprMatrix("a + b", A4:C7)

Places the matrix resulting from “a + b” to A4:C7.

50

ChExcel and VBA Functions ChDeclVar

ChDeclVar
Synopsis in Worksheet

int ChDeclVar(“ChDecl”);

Synopsis in VBA

int ChDeclVar(“ChDecl”);

Purpose
Declare and initialize Ch variable.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
ChDecl Ch declaration

Description
The function ChDeclVar() takes a Ch declaration as an argument. If ChDecl was previously defined, it is overwritten.
The declaration can be of any data type.

Examples

ChDeclVar("double array x[500];")

Declare Ch variable x of array double type.

ChDeclVar("char * y = ""hi"";")

Declare and initialize Ch variable y of character pointer type.

51

ChExcel and VBA Functions ChExprEval

ChExprEval
Synopsis in Worksheet

int ChExprEval(“Expr”);

Synopsis in VBA

int ChExprEval(“Expr”);

Purpose
Evaluate Ch Expression.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
Expr Ch Expression

Description
The function ChExprEval() takes a Ch expression as an argument. If the expression contains a function, it should
be located in the current session or in a function file specified by the system variable fpath in Ch. It evaluates the
expression and saves the changes in the Ch session.

Examples

ChExprEval("linspace(x,.1,5.0)")

Linearly space the array x from .1 to 5.0.

ChExprEval("a = sin(y)")

Set the variable a equal to the sin of y.

52

ChExcel and VBA Functions ChFunc

ChFunc
Synopsis in Worksheet

VARIANT ChFunc(“FuncName”, arg ...);

Synopsis in VBA

VARIANT ChFunc(“FuncName”, arg ...);

Purpose
Evaluate Ch function with return type double, integer, float, char, or string.

Return Value
This function returns the result of the function on success, and #ERROR# on failure.

Parameters
FuncName Ch function name
arg argument
...

Description
The function ChFunc makes a call to a function and returns the value of the function. ChFunc takes a function name
and variable number of parameters as arguments. The function should be located in the current session or in a function
file specified by the system variable fpath in Ch. The function passed to ChFunc must have a return value of double,
int, float, char, short, or string. This function can return a single value of data type double, int, float, char, short, or
string. ChFunc will return the value of the function on success and #ERROR# on failure.

Examples

ChFunc("pow",2,3)

Returns the value 8.
ChFunc("plotxy","x","y","""ChPlot""","""xlabel""","""ylabel""")

Generates a plot using x and y with title “ChPlot” and x and y labels.

53

ChExcel and VBA Functions ChFuncMatrix[VB]

ChFuncMatrix[VB]
Synopsis in Worksheet

VARIANT ChFuncMatrix(“FuncName”, Range, arg ...);

Synopsis in VBA

VARIANT ChFuncMatrixVB(“FuncName”, Range , arg ...);

Purpose
Evaluate Ch function with return type array and place result in worksheet.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
FuncName Ch function name
Range Excel range
arg argument
...

Description
ChFuncMatrix calls a Ch function and returns the resulting matrix. The function takes a Ch function name, range, and
a variable number of parameters as arguments. The function should be located in the current session or in a function
file specified by the system variable fpath in Ch. The Ch function passed to ChFuncMatrix must return a matrix of
double or integer type. ChFuncMatrix will evaluate the function and place the returned matrix into the specified range.
The specified range must have the exact same dimensions as the result or the data will be formatted incorrectly. Make
sure not to include the function cell into the range that you pass to ChFuncMatrix, or the function will be overwritten.
This function returns 0 on success and #ERROR# on failure.

Examples
ChFuncMatrix("transpose",A3:C6,"r")
Places the inverse of the matrix r into the cells A3 through C6.

54

ChExcel and VBA Functions ChGetMatrix[VB]

ChGetMatrix[VB]
Synopsis in Worksheet

int ChGetMatrix(Range, “ChVar”);

Synopsis in VBA

int ChGetMatrixVB(Range, “ChVar”);

Purpose
Get matrix or scalar variable and place into worksheet.
Return Value
This function returns 0 on success, and #ERROR# on failure.

Parameters
Range Excel range
ChVar Ch variable name
...

Description
ChGetMatrix retrieves the value of a Ch variable and places it into the Excel worksheet. The function takes two argu-
ments, a range and a variable name. The value for a Ch variable will be placed in the specified range. If the variable is
a scalar, it will be placed in the specified cell in the first argument. If the Ch matrix is smaller than the specified range,
it will only fill the required range. If the Ch matrix is larger than the specified range, it will overflow into the adjacent
cells. If the variable is a one dimensional array it can be placed into the worksheet as either a row or a column. To
specify row format select a single row range. To specify column format select a single column range. Make sure not
to include the function cell into the range that you pass to ChGetMatrix, or the function will be overwritten.

Examples

ChDeclVar("array double y[5][5]")
ChGetMatrix(A4:E9, "y")

Place the matrix y into the cells A4 through E9.
ChDeclVar("int x = 10")
ChGetMatrix(A4, "x")

Places the value of x into the cell A4.

55

ChExcel and VBA Functions ChPutMatrix

ChPutMatrix
Synopsis in Worksheet

int ChPutMatrix(Range, “ChVar”);

Synopsis in VBA

int ChPutMatrix(Range, “ChVar”);

Purpose
Place the value of a cell or the value of a range of cells into a Ch variable.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
Range Excel Range
ChVar Ch variable name

Description
The function ChPutMatrix() takes a range of cells, and a Ch variable name as arguments. If a range is pasted to
ChPutMatrix, the data will be placed into a Ch variable of array double type with dimensions corresponding to the
Excel matrix. If a single cell is selected, the data will be placed into a Ch variable of double type. If the variable name
passed to ChPutMatrix has been previously declared, the original variable will be overwritten.

Examples

ChPutMatrix(A3:B5, "y")

Places the matrix in cells A3 through B5 into the Ch variable y. Declared as array double y[3][2].

56

ChExcel and VBA Functions ChReinit

ChReinit
Synopsis in Worksheet

int ChReinit();

Synopsis in VBA

int ChReinit();

Purpose
Reinitialize Ch session.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
This function does not take any arguments.

Description
The function ChReinit() reinitializes the current Ch session. All variables and changes are permanently erased.

Examples

ChReinit()

Reinitialize the current Ch session.

57

ChExcel and VBA Functions ChRemVar

ChRemVar
Synopsis in Worksheet

int ChRemVar(“ChVar”);

Synopsis in VBA

int ChRemVar(“ChVar”);

Purpose
Remove Ch variable from current session.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
ChVar Ch variable name

Description
The function ChRemVar() takes a Ch variable name as an argument. The variable is removed from the session along
with it’s data. The variable name can then be redeclared.

Examples

ChRemVar("x")

Remove the Ch variable x from the current Ch session.

58

ChExcel and VBA Functions ChRunScript

ChRunScript
Synopsis in Worksheet

int ChRunScript(“ScriptName”);

Synopsis in VBA

int ChRunScript(“ScriptName”);

Purpose
Run script in Ch session.

Return Value
This function returns 0 on success, #ERROR# on failure.

Parameters
ScriptName Ch script name

Description
The function ChRunScript() takes a Ch script name as an arguments. This function reinitializes the Ch session so all
variables in the current session are erased. The user will input the name of the program and ChExcel will execute it
from the function main() if it exists. Any global variable declared in the program will then be accessible to ChExcel.
Also, any functions that have been declared can now be used by the ChExcel. The program must reside in Chs program
path specified by the Ch variable _path or the user must enter a complete path to the program. This function is best
used to begin a ChExcel session to import variables from Ch to Excel.

Examples

ChRunScript("Myscript.ch")

Run the script Myscript.ch in the current Ch session.
ChRunScript("C:/Programs/Scripts/Myscript.ch")

Run the script Myscript.ch in the current Ch session.

59

VBA Functions ChPutVar

10.2 VBA Functions

ChPutVar
Synopsis in VBA

int ChPutVar(“ChVar”, VBAvar);

Purpose
Put value of Ch variable and into VBA variable.
Return Value
This function returns 0 on success, and -1 on failure.

Parameters
ChVar Ch variable name
VBAvar VBA variable name

Description
ChPutVar places the value of a VBA variable into a Ch variable. The function takes two arguments, a Ch variable
name and a VBA variable name. The Ch variable will be declared with the same data type and dimensions as the VBA
variable. If the Ch variable has been previously declared, it will be overwritten.

Examples

Dim b(10,15) As Double
ChPutVar("y", b)

Place the value the VBA variable b into the Ch variable y declared as "array double y[10][15]".

60

VBA Functions ChGetVar

ChGetVar
Synopsis in VBA

int ChGetVar(“ChVar”, VBAvar);

Purpose
Get value of Ch variable and place into VBA variable.
Return Value
This function returns 0 on success, and -1 on failure.

Parameters
ChVar Ch variable name
VBAvar VBA variable name

Description
ChGetVar retrieves the value of a Ch variable and places it into a VBA variable. The function takes two arguments,
a Ch variable name and a VBA variable name. The value of the Ch variable will be placed into the VBA variable. If
the Ch variable is a one or two dimensional array, the VBA variable must be declared with matching dimensions. The
VBA variable also must be declared with the same data type as the Ch variable.

Examples

Dim b(10,15) As Double
ChDeclVar("array double y[10][15])
ChGetVar("y", b)

Place the value the Ch variable y into the VBA variable b.

61

Index

Argument passing conventions, 10

ChAppendMatrix(), 12, 17, 45, 47
ChAppendScript(), 12, 18, 45, 48
ChCalcExpr(), 12, 14, 45, 49
ChCalcExprMatrix(), 12, 15, 46, 50
ChCalcExprMatrixVB, 12, 46
ChDeclVar(), 12, 46, 51
ChExcel, 1
ChExprEval(), 12, 16, 24, 26, 46, 52
ChFunc(), 12, 14, 24, 26, 46, 53
ChFuncMatrix(), 12, 15, 46, 54
ChFuncMatrixVB, 12, 46
ChGetMatrix(), 12, 16, 46, 55
ChGetMatrixVB, 12, 46
ChGetVar(), 12, 30, 46, 61
ChPutMatrix(), 12, 13, 46, 56
ChPutVar(), 12, 31, 46, 60
ChReinit(), 1, 12, 18, 46, 57
ChRemVar(), 12, 13, 46, 58
ChRunScript(), 12, 18, 46, 59
copyright, ii

Data management functions, 12
DeclVar, 4

EvalExpr, 4
Excel, 1

GetMatrix, 4

installation, 1
interpolation, 38

Microsoft Excel, 1

PutMatrix, 3

RestartCh, 1, 4

typographical conventions, iii

VBA, 1, 30
Visual Basic for Applications, 1, 30

62

	Introduction
	Installing ChExcel
	Getting Started
	Configure Excel to Work with ChExcel
	The ChExcel Toolbar
	PutMatrix
	GetMatrix
	DeclVar
	EvalExpr
	RestartCh

	ChExcel Toolbar Examples
	ChExcel Functions
	Calling ChExcel Functions
	Argument Passing Conventions

	Data Management Functions
	Toolbar Buttons vs. Functions

	Variable Declaration Functions
	ChDeclVar()
	ChPutMatrix()
	ChRemVar()
	Variable Declaration Function Examples

	Variable and Data Operation Functions
	Functions Returning Scalar Values
	ChCalcExpr()
	ChFunc()
	Examples of Functions Returning Scalar Values

	Functions Returning Matrices
	ChCalcExprMatrix()
	ChFuncMatrix()
	Examples of Functions Returning Matrices

	Function ChGetMatrix() for Obtaining Both Scalar and Matrix Values from Variables
	Function to Evaluate Both Scalar and Matrix Expressions
	ChExprEval()
	Expression Evaluation Function Examples

	Function to Modify Matrices
	ChAppendMatrix()
	ChAppendMatrix Examples

	Functions Running Ch Programs
	ChRunScript()
	ChAppendScript()
	ChReinit()
	Examples of Functions Running Ch Programs

	Functions Capable of Plotting
	Plotting Examples

	User Defined Functions
	User Defined Function Example

	Using Win32 for Graphical User Interface
	Programming in Visual Basic for Applications (VBA) with ChExcel
	ChGetVar()
	ChPutVar()
	VBA Programming Examples

	Examples
	Example 1: Data Interpolation

	References
	Function Reference
	ChExcel and VBA Functions
	ChAppendMatrix
	ChAppendScript
	ChCalcExpr
	ChCalcExprMatrix[VB]
	ChDeclVar
	ChExprEval
	ChFunc
	ChFuncMatrix[VB]
	ChGetMatrix[VB]
	ChPutMatrix
	ChReinit
	ChRemVar
	ChRunScript

	VBA Functions
	ChPutVar
	ChGetVar

	Index

